→ Магнитные носители информации. Запись информации на магнитные носители. Магнитные и оптические носители информации Сообщение о носители информации магнитные оптические диски

Магнитные носители информации. Запись информации на магнитные носители. Магнитные и оптические носители информации Сообщение о носители информации магнитные оптические диски

Самым первым носителем магнитной записи, на котором фиксировалась информация в аппаратах Поульсена на рубеже XIX-ХХвв., была стальная проволока диаметром до 1 мм. В начале XX столетия для этих целей использовалась также стальная катаная лента. Однако качественные характеристики этих носителей были весьма низкими. Достаточно сказать, что для производства 14-часовой магнитной записи докладов на Международном конгрессе в Копенгагене в 1908 г. потребовалось 2500 км проволоки весом около 100 кг. Кроме того, в процессе использования проволоки и стальной ленты возникала трудноразрешимая проблема соединения отдельных их кусков. К примеру, связанная узелком проволока не проходила через магнитную головку. Вдобавок она легко путалась, а тонкая стальная лента резала руки. Стальной магнитный диск, первый патент на который был выдан еще в 1906 г., не получил тогда применения 1 .

Лишь со второй половины 1920-х гг., когда была изобретена порошковая магнитная лента, началось широкомасштабное применение магнитной записи. Патент на технологию нанесения ферромагнитного порошка на пленку получил в 1928 г. Фриц Пфеймер в Германии. Первоначально магнитный порошок наносился на бумажную подложку, затем - на ацетилцеллюлозу, пока не началось применение в качестве подложки высокопрочного

1 Василевскии Ю. А. Носители магнитной записи. М., 1989. С. 5-6.

материала - полиэтилентерефталата (лавсана). Совершенствовалось также и качество магнитного порошка. Стали использоваться, в частности, порошки оксида железа с добавкой кобальта, оксида хрома, металлические магнитные порошки железа и его сплавов, что позволило в несколько раз увеличить плотность записи. Рабочий слой наносится на подложку путем вакуумного напыления или электролитического осаждения в виде магнитного лака, который состоит из магнитного порошка, связующего вещества, растворителя, пластификатора и различных добавок.

Кроме гибкой основы и рабочего магнитного слоя в ленте могут быть и дополнительные слои: защитный - на поверхности рабочего слоя и антифрикционный - на тыльной стороне ленты, с целью предохранения рабочего слоя от механического износа, повышения механической прочности ленты и для улучшения ее скольжения по поверхности магнитной головки. Антифрикционный слой снимает также электрические заряды, которые накапливаются на магнитной ленте. Промежуточный (подслой) между основой и рабочим слоем служит для улучшения сцепления рабочего и антифрикционного слоев с основой.

В отличие от носителей механической звукозаписи, магнитная лента пригодна для многократной записи информации. Число таких записей очень велико и ограничивается только механической прочностью самой магнитной ленты.

Первые магнитофоны, появившиеся в 1930-е гг., были катушечными. В них магнитная лента наматывалась на катушки. Причем вначале это были громадные бобины шириной 1 дюйм (25,4 мм). При записи и воспроизведении пленка перематывалась с заполненной катушки на пустую.

В 1963 г. фирмой Philips была разработана так называемая кассетная запись, позволившая применять очень тонкие магнитные ленты. Их максимальная толщина составляет всего 20 мкм при ширине 3,81 мм. В кассетных магнитофонах обе катушки находятся в специальной компакт-кассете и конец пленки заранее закреплен на пустой катушке. Иначе говоря, здесь магнитная лента и кассета представляют собой единый функциональный механизм. Запись на компакт-кассетах - двухсторонняя. Общее время записи составляет обычно 60, 90 и 120 минут.

В конце 1970-х гг. появились микрокассеты размером 50x33x8 мм, т. е. величиной в спичечную коробку, для портативных диктофонов и телефонов с автоответчиком, а в середине 1980-х гг. - пикокассеты - втрое меньше микрокассет .

С 1952 г. магнитная лента стала использоваться для записи и хранения информации в электронно-вычислительных машинах. Преимуществом магнитной ленты является возможность осуществлять запись с повышенной плотностью за счет того, что общая площадь поверхности магнитного слоя у ленты значительно выше, чем у остальных типов носителей, и ограничена только длиной ленты. Накопители на кассетной магнитной ленте - картриджи достигают емкости в несколько Тбайт, а в ближайшей перспективе их емкость будет составлять десятки Тбайт. Лентопротяжные механизмы для картриджей получили название стримеры (от англ, stream - поток). По принципу действия они похожи на магнитофон.

Вместе с тем магнитной ленте присущ и серьезный недостаток. Она не дает возможности прямого доступа к записанной информации. Для этого ленту необходимо сначала перемотать на нужное место, что существенно увеличивает время считывания с нее информации. Кассеты с магнитной лентой (картриджи) характеризуется также и большими размерами. Поэтому в настоящее время они применяются главным образом в системах резервного копирования в центрах хранения данных, на предприятиях, в крупных информационных центрах, а также для хранения информации в серверах и настольных рабочих станциях, где первостепенное значение имеет надежность, стабильность работы, большая емкость, сравнительно небольшая стоимость. Системы резервного копирования позволяют обеспечить сохранность информации при ошибках, неисправностях или стихийных бедствиях.

На магнитную ленту можно записывать не только звуковую, но и видеоинформацию. Лента для видеосъемки по своему строению аналогична ленте для аудиозаписи. Однако ее рабочий слой имеет обычно более сложную структуру. Дело в том, что видеосигналы высокой частоты записываются у самой поверхности рабочего слоя. Для них можно использовать мелкие частицы металлов. Низкие же частоты лучше передаются крупными частицами, которые целесообразно размещать в глубине. Поэтому рабочий слой магнитной ленты для видеосъемки может состоять из двух слоев. Магнитная лента для видеодокументирования также заправляется в специальные кассеты, которые обеспечивают ей защиту от механических воздействий, загрязнения и быструю зарядку в видеоаппаратуру. Широко распространенные в 1980-е - 1990-е гг. видеокассеты в настоящее время уступили свое место более перспективным носителям видеоинформации.

В электронно-вычислительных машинах на первых порах использовались также магнитные барабаны. В частности, в отечественной большой электроно-счетной машине (БЭСМ-6) применялись магнитные барабаны весом около 8 кг, но с объемом памяти всего лишь 1 Мбайт.

С начала 1960-х гг. широкое применение, прежде всего в запоминающих устройствах ЭВМ, получили магнитные диски. Это алюминиевые или пластмассовые диски диаметром от 30 до 350 мм, покрытые магнитным порошковым рабочим слоем толщиной в несколько микрон. Магнитное покрытие на первых порах состояло из окиси железа, впоследствии - из двуокиси хрома.

В дисководе, как и в магнитофоне, информация записывается с помощью магнитной головки, только не вдоль ленты, а на концентрических магнитных дорожках, расположенных на поверхности вращающегося диска, как правило, с двух сторон. Магнитные диски бывают жесткими и гибкими, сменными и встроенными в персональный компьютер. Их основными характеристиками являются: информационная емкость, время доступа к информации и скорость считывания подряд.

Жесткие несъемные диски в ЭВМ конструктивно объединены в едином блоке с дисководом. Они компонуются в пакеты на одной оси. Пакет дисков помещается в герметичный корпус, который обеспечивает необходимую чистоту и постоянное давление очищенного от пыли воздуха. В настоящее время вместо воздуха началось применение в качестве наполнителя инертного газа гелия, позволяющего за счет его более низкой плотности существенно повысить энергоэффективность.

Каждый диск содержит одинаковое число последовательно расположенных дорожек (треков). Ширина магнитной дорожки составляет примерно 1 мкм. Первая модель жесткого диска, созданного в 1973 г., имела 30 дорожек по 30 секторов, что случайно совпало с калибром «30/30» известного охотничьего ружья «Винчестер» и породило жаргонное название жестких магнитных дисков - «винчестерские», «винчестеры». Треки представляют собой концентрические окружности, соответствующие зонам остаточной намагниченности, созданной магнитными головками. В свою очередь, каждая из дорожек разбита на последовательно расположенные секторы.

В развитии жестких дисков отчетливо прослеживается основная тенденция - постепенное повышение плотности записи, сопровождающееся увеличением скорости вращения шпиндельной головки и уменьшением времени доступа к информации, а в конечном счете - увеличением производительности. Емкость диска, первоначально достигавшая нескольких Гбайт, к середине второго десятилетия XXI века дошла до 10 Тбайт (ежегодный рост емкости жестких компьютерных дисков составляет 35-40 процентов). Размещение такого объема информации стало возможным на дисках с перпендикулярным способом записи, появившихся в 2007 г. В недалекой перспективе этот способ позволит увеличить емкость до 85 Тбайт (можно записать 86 млн цветных фотографий или 21,5 тыс. фильмов).

Жесткие диски предназначены для постоянного хранения информации, в т.ч. необходимой при работе с компьютером (системное программное обеспечение, пакеты прикладных программ и т. д.). На основе жестких дисков выпускаются также и внешние накопители информации емкостью до нескольких Тбайт.

Гибкие пластмассовые магнитные диски (флоппи-диски, от англ, floppy - свободно висящий) изготавливались из искусственной пленки - майлара, покрытой износоустойчивым ферролаком, и размещались по одному в специальных жестких пластиковых футлярах - кассетах, которые обеспечивают механическую защиту носителя. Кассета с флоппи-диском называется дискетой.

Первый гибкий диск появился в 1967 г. Он имел диаметр 8 дюймов и емкость 100 Кбайт. В 1976 г. размер флоппи-диска удалось уменьшить до 5,25 дюйма, а в 1980 г. фирма Soni разработала дискету и привод-дисковод на 3,5 дюйма, которые преимущественно и выпускались в последующие десятилетия.

Для чтения и записи информации используется специальное электронно-механическое устройство - дисковод, куда помещается дискета. В дискете имеется центральное отверстие под шпиндель привода дисковода, а в футляре сделано закрывающееся металлической шторкой отверстие для доступа магнитных головок, посредством которых производятся чтение и запись информации. Запись на дискету осуществляется по такому же принципу, как и в магнитофоне. Здесь также имеется непосредственный механический контакт головки с магнитным рабочим слоем, что приводит к сравнительно быстрому износу материального носителя.

Емкость одной 3,5-дюймовой дискеты составляла обычно от 1,0 до 2,0 Мбайт. Стандартные дискеты имели емкость 1,44 Мбайт. Однако были разработаны 3,5-дюймовые дискеты емкостью до 250 Мбайт.

Дискеты оказались достаточно привередливыми носителями. Они менее износостойки, нежели жесткие диски, подвержены воздействию магнитных полей и повышенной температуры. Все это часто приводило к утрате записанных данных. Поэтому дискеты использовались преимущественно для оперативного хранения документированной информации. В настоящее время они вытеснены более надежными и эффективными носителями на базе флеш-памяти.

В последней четверти XX века во многих странах мира, а с 1990-х гг. - и в России широкое применение нашли так называемые пластиковые карты, представляющие собой устройства для магнитного способа хранения информации и управления данными.

Предшественниками пластиковых карт были карты, изготавливавшиеся из картона с целью подтверждения кредитоспособности держателя вне банка. В 1928 г. одна из американских компаний приступила к выпуску металлических карточек размером 63 на 35 мм. На них было выдавлено имя владельца, название города, штата и другая информация. Такие карты выдавались постоянным клиентам в крупных магазинах. При оплате товаров продавец прокатывал карточку через специальный аппарат, в результате чего выдавленные на ней буквы и цифры отпечатывались на торговом чеке. Затем этот чек с вписанной от руки суммой покупки отсылался для погашения в банк. Первая же современная кредитная карта, на основе которой возникла платежная система VISA, была выпущена в 1958 г. банком Bank of America .

Пластиковые карты состоят из трех слоев: полиэфирной основы, на которую наносится тонкий рабочий слой, и защитного слоя. В качестве основы обычно используется поливинилхлорид, который легко обрабатывается, устойчив к температурным, химическим и механическим воздействиям. Однако в ряде случаев основой для магнитных карт служит так называемый псевдопластик - плотная бумага или картон с двусторонним ламинированием.

Рабочий слой (ферромагнитный порошок) наносится на пластик методом горячего тиснения в виде отдельных узких полосок. Магнитные полоски по своим физическим свойствам и сфере применения делятся на два типа: высокоэрцетивные и низко- эрцетивные. Высокоэрцетивные полоски имеют черный цвет. Они устойчивы к воздействию магнитных полей. Для их записи нужна более высокая энергия. Используются в качестве кредитных карт, водительских удостоверений и т. п., т. е. в тех случаях, когда требуется повышенная износостойкость и защищенность. Низкоэрцетивные магнитные полосы имеют коричневый цвет. Они менее защищены, но зато проще и быстрее записываются. Используются на картах ограниченного срока действия.

Защитный слой магнитных пластиковых карт состоит из прозрачной полиэфирной пленки. Он призван предохранять рабочий слой от износа. Иногда используются покрытия, предохраняющие от подделки и копирования. Защитный слой обеспечивает до двух десятков тысяч циклов записи и чтения.

Следует заметить, что, кроме магнитного, существуют и другие способы записи информации на пластиковую карту: графическая запись, эмбоссирование (механическое выдавливание), штрих-кодирование, лазерная запись.

В настоящее время в пластиковых картах вместо магнитных полосок все более широко стали применяться электронные чипы. Такие карты, в отличие от простых магнитных, стали называть интеллектуальными или смарт-картами (от англ, smart -умный). Встроенный в них микропроцессор позволяет хранить значительный объем информации, дает возможность производить необходимые расчеты в системе банковских и торговых платежей, превращая, таким образом, пластиковые карты в многофункциональные носители информации.

По способу доступа к микропроцессору (интерфейсу) смарт- карты могут быть:

  • - с контактным интерфейсом (т. е. при совершении операции карта вставляется в электронный терминал);
  • - с дуальным интерфейсом (могут действовать как контактно, так и бесконтактно, т. е. обмен данными между картой и внешними устройствами может осуществляться через радиоканал).

Размеры пластиковых карт стандартизованы. В соответствии с международным стандартом ISO-7810 их длина равна 85,595 мм, ширина - 53,975 мм, толщина - 3,18 мм.

Сфера применения магнитных пластиковых и псевдопласти- ковых карт, а также смарт-карт достаточно обширна. Помимо банковских систем, они используются в качестве компактного носителя информации, идентификатора автоматизированных систем учета и контроля, удостоверения, пропуска, интернет-карты, SIM-карты сотовой связи, билета для проезда на транспорте, электронного (биометрического) паспорта и т. п.

Материальные носители магнитной записи постоянно совершенствуются вместе с технологиями электромагнитного документирования. Наблюдается тенденция к увеличению плотности записи информации на магнитных носителях при уменьшении их размеров и сокращении времени доступа к информации. Разрабатываются такие технологии, которые уже в недалеком будущем позволят увеличить объем памяти стандартного носителя в несколько тысяч раз по сравнению с ныне действующими устройствами. А в более отдаленной перспективе ожидается появление носителя, где роль магнитных частиц будут играть отдельные атомы. В результате его емкость, по мнению разработчиков, в миллиарды раз превысит существующие в настоящее время стандарты .

  • Василевский Ю. А. Указ. соч. С. 11, 225, 227-228; Левин В. И. Указ. соч.С. 23-24.
  • Мануков С. Как не стать карточным болваном // Компания. 2009.№ 27-28. С. 52.
  • Фрадкин В. Прошлое, настоящее и будущее носителей информации //Компьютер Price. 2003. № 46.

Накопители на гибких магнитных дисках: принцип действия, технические характеристики, основные компоненты. Накопители на жестких магнитных дисках: форм-факторы, принцип работы, типы, основные характеристики, режимы работы. Конфигурирование и форматирование магнитных дисков. Утилиты обслуживания жестких магнитных дисков. Логическая структура и формат магнитооптических и компакт-дисков. Приводы CD-R (RW), DVD-R (RW), ZIP: принцип действия, основные компоненты, технические характеристики. Магнитооптические накопители, стримеры, флэш-диски. Обзор основных современных моделей.

Студент должен знать:

Принцип действия и основные компоненты дисковода FDD;

Характеристики и режимы работы накопителя на жестких магнитных дисках;

Принцип работы приводов магнитооптических и компакт-дисков;

Форматы оптических и магнитооптических дисков;

Студент должен уметь:

Записывать информацию на различные носители;

Использовать программные средства технического обслуживания жесткого диска;

Определять основные характеристики накопителей;

Цели занятия:

Ознакомить студентов с основными компонентами накопителями информации.

Изучить типы накопителей информации их характеристики.

Воспитание информационной культуры учащихся, внимательности, аккуратности, дисциплинированности, усидчивости.

Развитие познавательных интересов, навыков самоконтроля, умения конспектировать.

Ход занятия :

Теоретическая часть.

Хранение данных на магнитных носителях

Практически во всех персональных компьютерах информация хранится на носителях, использующих магнитные или оптические принципы. При использовании магнитных устройств хранения двоичные данные “превращаются” в небольшие металлические намагниченные частички, расположенные на плоском диске или ленте в виде “узора”. Этот магнитный “узор” впоследствии может быть расшифрован в поток двоичных данных.

В основе работы магнитных носителей - накопителей на жестких и гибких дисках - лежит электромагнетизм. Суть его состоит в том, что при пропускании через проводник электрического тока вокруг него образуется магнитное поле (рис. 1). Это поле воздействует на оказавшееся в нем ферромагнитное вещество. При изменении направления тока полярность магнитного поля также изменяется. Явление электромагнетизма используется в электродвигателях для генерации сил, воздействующих на магниты, которые установлены на вращающемся валу.

Однако существует и противоположный эффект: в проводнике, на который воздействует переменное магнитное поле, возникает электрический ток. При изменении полярности магнитного поля изменяется и направление электрического тока (рис. 2).

Головка чтения/записи в любом дисковом накопителе состоит из U-образного ферромагнитного сердечника и намотанной на него катушки (обмотки), по которой может протекать электрический ток. При пропускании тока через обмотку в сердечнике (магнитопроводе) головки создается магнитное поле (рис. 3). При переключении направления протекающего тока полярность магнитного поля также изменяется. В сущности, головки представляют собой электромагниты, полярность которых можно очень быстро изменить, переключив направление пропускаемого электрического тока.

Рис. 1. При пропускании тока через проводник вокруг него образуется магнитное поле

Рис. 2. При перемещении проводника в магнитном поле в нем генерируется электрический ток

Рис. 3. Головка чтения/записи

Магнитное поле в сердечнике частично распространяется в окружающее пространство благодаря наличию зазора, “пропиленного” в основании буквы U. Если вблизи зазора располагается другой ферромагнетик (рабочий слой носителя), то магнитное поле в нем локализуется, поскольку подобные вещества обладают меньшим магнитным сопротивлением, чем воздух. Магнитный поток, пересекающий зазор, замыкается через носитель, что приводит к поляризации его магнитных частиц (доменов) в направлении действия поля. Направление поля и, следовательно, остаточная намагниченность носителя зависят от полярности электрического поля в обмотке головки.

Гибкие магнитные диски обычно делаются на лавсановой, а жесткие - на алюминиевой или стеклянной подложке, на которую наносится слой ферромагнитного материала. Рабочий слой в основном состоит из окиси железа с различными добавками. Магнитные поля, создаваемые отдельными доменами на чистом диске, ориентированы случайным образом и взаимно компенсируются на любом сколько-нибудь протяженном (макроскопическом) участке поверхности диска, поэтому его остаточная намагниченность равна нулю.

Если участок поверхности диска при протягивании вблизи зазора головки подвергается воздействию магнитного поля, то домены выстраиваются в определенном направлении и их магнитные поля больше не компенсируют друг друга. В результате на этом участке появляется остаточная намагниченность, которую можно впоследствии обнаружить. Выражаясь научным языком, можно сказать: остаточный магнитный поток, формируемый данным участком поверхности диска, становится отличным от нуля.

Конструкции головок чтения/записи

По мере развития технологии производства дисковых накопителей совершенствовались и конструкции головок чтения/записи. Первые головки представляли собой сердечники с обмоткой (электромагниты). По современным меркам их размеры были огромными, а плотность записи - чрезвычайно низкой. За прошедшие годы конструкции головок прошли долгий путь развития от первых головок с ферритовыми сердечниками до современных типов.

Чаще всего используются головки следующих четырех типов:

ü ферритовые;

ü с металлом в зазоре (MIG);

ü тонкопленочные (TF);

ü магниторезистивные (MR);

ü гигантские магниторезистивные (GMR).

· Ферритовые головки

Классические ферритовые головки впервые были использованы в накопителе Winchester 30-30 компании IBM. Их сердечники делаются на основе прессованного феррита (на основе окиси железа). Магнитное поле в зазоре возникает при протекании через обмотку электрического тока. В свою очередь, при изменениях напряженности магнитного поля вблизи зазора в обмотке наводится электродвижущая сила. Таким образом, головка является универсальной, т.е. может использоваться как для записи, так и для считывания. Размеры и масса ферритовых головок больше, чем у тонкопленочных; поэтому, чтобы предотвратить их нежелательные контакты с поверхностями дисков, приходится увеличивать зазор.

За время существования ферритовых головок их первоначальная (монолитная) конструкция была значительно усовершенствована. Были разработаны, в частности, так называемые стеклоферритовые (композитные) головки, небольшой ферритовый сердечник которых установлен в керамический корпус. Ширина сердечника и магнитного зазора таких головок меньше, что позволяет повысить плотность размещения дорожек записи. Кроме того, снижается их чувствительность к внешним магнитным помехам.

· Головки с металлом в зазоре

Головки с металлом в зазоре (Metal-In-Gap - MIG) появились в результате усовершенствования конструкции композитной ферритовой головки. В таких головках магнитный зазор, расположенный в задней части сердечника, заполнен металлом. Благодаря этому существенно уменьшается склонность материала сердечника к магнитному насыщению, что позволяет повысить магнитную индукцию в рабочем зазоре и, следовательно, выполнить запись на диск с большей плотностью. Кроме того, градиент магнитного поля, создаваемого головкой с металлом в зазоре, выше, а это означает, что на поверхности диска формируются намагниченные участки с более четко выраженными границами (уменьшается ширина зон смены знака).

Эти головки позволяют использовать носители с большой коэрцитивной силой и тонкопленочным рабочим слоем. За счет уменьшения общей массы и улучшения конструкции такие головки могут располагаться ближе к поверхности носителя.

Головки с металлом в зазоре бывают двух видов: односторонние и двусторонние (т.е. с одним и с двумя металлизированными зазорами). В односторонних головках прослойка из магнитного сплава расположена только в заднем (нерабочем) зазоре, а в двусторонних - в обоих. Слой металла наносится методом вакуумного напыления. Индукция насыщения магнитного сплава примерно вдвое больше, чем у феррита, что, как уже отмечалось, позволяет осуществлять запись на носители с большой коэрцитивной силой, которые используются в накопителях высокой емкости. Двусторонние головки в этом отношении лучше односторонних.

· Тонкопленочные головки

Тонкопленочные (Thin Film - TF) головки производятся почти по той же технологии, что и интегральные схемы, т.е. путем фотолитографии. На одной подложке можно “напечатать” сразу несколько тысяч головок, которые получаются в результате маленькими и легкими.

Рабочий зазор в тонкопленочных головках можно сделать очень узким, причем его ширина регулируется в процессе производства путем наращивания дополнительных слоев немагнитного алюминиевого сплава. Алюминий полностью заполняет рабочий зазор и хорошо защищает его от повреждений (сколов краев) при случайных контактах с диском. Собственно сердечник делается из сплава железа и никеля, индукция насыщения которого в 2–4 раза больше, чем у феррита.

Формируемые тонкопленочными головками участки остаточной намагниченности на поверхности диска имеют четко выраженные границы, что позволяет добиться очень высокой плотности записи. Благодаря небольшому весу и малым размерам головок можно значительно уменьшить просвет между ними и поверхностями дисков по сравнению с ферритовыми и MIG-головками: в некоторых накопителях его величина не превышает 0,05 мкм. В результате, во-первых, повышается остаточная намагниченность участков поверхности носителя и, во-вторых, увеличивается амплитуда сигнала и улучшается соотношение “сигнал–шум” в режиме считывания, что в итоге сказывается на достоверности записи и считывания данных.

В настоящее время тонкопленочные головки используются в большинстве накопителей высокой емкости, особенно в малогабаритных моделях, практически вытеснив головки с металлом в зазоре. Их конструкция и характеристики постоянно улучшаются, но, скорее всего, в ближайшее время они будут вытеснены магниторезистивными головками.

· Магниторезистивные головки

Магниторезистивные (Magneto-Resistive - MR) головки появились сравнительно недавно. Они разработаны компанией IBM и позволяют добиться самых высоких значений плотности записи и быстродействия накопителей. Впервые магниторезистивные головки были установлены в накопителе на жестких дисках емкостью 1 Гбайт (3,5") компании IBM в 1991 году.

Все головки являются детекторами, т.е. регистрируют изменения в зонах намагниченности и преобразуют их в электрические сигналы, которые могут быть интерпретированы как данные. Однако при магнитной записи существует одна проблема: при уменьшении магнитных доменов носителя уменьшается уровень сигнала головки и существует вероятность принять шум за “настоящий” сигнал. Для решения этой проблемы необходимо иметь эффективную головку чтения, которая более достоверно сможет определить наличие сигнала.

Магниторезистивные головки дороже и сложнее головок других типов, поскольку в их конструкции есть добавочные элементы, а технологический процесс включает несколько дополнительных этапов. Ниже перечислены основные отличия магниторезистивных головок от обычных:

v к ним должны быть подведены дополнительные провода для подачи измерительного тока на резистивный датчик;

v в процессе производства используется 4–6 дополнительных масок (фотошаблонов);

v благодаря высокой чувствительности магниторезистивные головки более восприимчивы к внешним магнитным полям, поэтому их приходится тщательно экранировать.

Во всех рассмотренных ранее головках в процессе записи и считывания “работал” один и тот же зазор, а в магниторезистивной головке их два - каждый для своей операции. При разработке головок с одним рабочим зазором приходится идти на компромисс при выборе его ширины. Дело в том, что для улучшения параметров головки в режиме считывания нужно уменьшать ширину зазора (для увеличения разрешающей способности), а при записи зазор должен быть шире, поскольку при этом магнитный поток проникает в рабочий слой на большую глубину (“намагничивая” его по всей толщине). В магниторезистивных головках с двумя зазорами каждый из них может иметь оптимальную ширину. Еще одна особенность рассматриваемых головок заключается в том, что их записывающая (тонкопленочная) часть формирует на диске более широкие дорожки, чем это необходимо для работы считывающего узла (магниторезистивного). В данном случае считывающая головка “собирает” с соседних дорожек меньше магнитных помех.

· Гигантские магниторезистивные головки

В 1997 году IBM анонсировала новый тип магниторезистивных головок, обладающих намного большей чувствительностью. Они были названы гигантскими магниторезистивными головками (Giant Magnetoresistive - GMR). Такое название они получили на основе используемого эффекта (хотя по размеру были меньше стандартных магниторезистивных головок). Эффект GMR был открыт в 1988 году в кристаллах, помещенных в очень сильное магнитное поле (приблизительно в 1 000 раз превышающее магнитное поле, используемое в накопителях на жестких дисках).

Способы кодирования данных

Данные на магнитном носителе хранятся в аналоговой форме. В то же время сами данные представлены в цифровом виде, так как являются последовательностью нулей и единиц. При выполнении записи цифровая информация, поступая на магнитную головку, создает на диске магнитные домены соответствующей полярности. Если во время записи на головку поступает положительный сигнал, магнитные домены поляризуются в одном направлении, а если отрицательный - в противоположном. Когда меняется полярность записываемого сигнала, происходит также изменение полярности магнитных доменов.

Если во время воспроизведения головка регистрирует группу магнитных доменов одинаковой полярности, она не генерирует никаких сигналов; генерация происходит только тогда, когда головка обнаруживает изменение полярности. Эти моменты изменения полярности называются сменой знака. Каждая смена знака приводит к тому, что считывающая головка выдает импульс напряжения; именно эти импульсы устройство регистрирует во время чтения данных. Но при этом считывающая головка генерирует не совсем тот сигнал, который был записан; на самом деле она создает ряд импульсов, каждый из которых соответствует моменту смены знака.

Чтобы оптимальным образом расположить импульсы в сигнале записи, необработанные исходные данные пропускаются через специальное устройство, которое называется кодером/декодером (encoder/decoder). Это устройство преобразует двоичные данные в электрические сигналы, оптимизированные в аспекте размещения зон смены знака на дорожке записи. Во время считывания кодер/декодер выполняет обратное преобразование: восстанавливает из сигнала последовательность двоичных данных. За прошедшие годы было разработано несколько методов кодирования данных, причем главной целью разработчиков было достижение максимальной эффективности и надежности записи и считывания информации.

При работе с цифровыми данными особое значение приобретает синхронизация. Во время считывания или записи очень важно точно определить момент каждой смены знака. Если синхронизация отсутствует, то момент смены знака может быть определен неправильно, в результате чего неизбежна потеря или искажение информации. Чтобы предотвратить это, работа передающего и принимающего устройств должна быть строго синхронизирована. Существует два пути решения данной проблемы. Во-первых, синхронизировать работу двух устройств, передавая специальный сигнал синхронизации (или синхросигнал) по отдельному каналу связи. Во-вторых, объединить синхросигнал с сигналом данных и передать их вместе по одному каналу. Именно в этом и заключается суть большинства способов кодирования данных.

Хотя разработано великое множество самых разнообразных методов, на сегодняшний день реально используются только три из них:

ü частотная модуляция (FM);

ü модифицированная частотная модуляция (MFM);

ü кодирование с ограничением длины поля записи (RLL).

Частотная модуляция (FM)

Метод кодирования FM (Frequency Modulation - частотная модуляция) был разработан прежде других и использовался при записи на гибкие диски так называемой одинарной плотности (single density) в первых ПК. Емкость таких односторонних дискет составляла всего 80 Кбайт. В 1970-х годах запись по методу частотной модуляции использовалась во многих устройствах, но сейчас от него полностью отказались.

Модифицированная частотная модуляция (MFM)

Основной целью разработчиков метода MFM (Modified Frequency Modulation - модифицированная частотная модуляция) было сокращение количества зон смены знака для записи того же объема данных по сравнению с FM-кодированием и соответственно увеличение потенциальной емкости носителя. При этом способе записи количество зон смены знака, используемых только для синхронизации, уменьшается. Синхронизирующие переходы записываются только в начало ячеек с нулевым битом данных и только в том случае, если ему предшествует нулевой бит. Во всех остальных случаях синхронизирующая зона смены знака не формируется. Благодаря такому уменьшению количества зон смены знака при той же допустимой плотности их размещения на диске информационная емкость по сравнению с записью по методу FM удваивается.

Вот почему диски, записанные по методу MFM, часто называют дисками двойной плотности (double density). Поскольку при рассматриваемом способе записи на одно и то же количество зон смены знака приходится вдвое больше “полезных” данных, чем при FM-кодировании, скорость считывания и записи информации на носитель также удваивается.

Кодирование с ограничением длины поля записи (RLL)

На сегодняшний день наиболее популярен метод кодирования с ограничением длины поля записи (Run Length Limited - RLL). Он позволяет разместить на диске в полтора раза больше информации, чем при записи по методу MFM, и в три раза больше, чем при FM-кодировании. При использовании этого метода происходит кодирование не отдельных битов, а целых групп, в результате чего создаются определенные последовательности зон смены знака.

Метод RLL был разработан IBM и сначала использовался в дисковых накопителях больших машин. В конце 1980-х годов его стали использовать в накопителях на жестких дисках ПК, а сегодня он применяется почти во всех ПК.

Измерение емкости накопителя

В декабре 1998 года Международная электротехническая комиссия (МЭК), занимающаяся стандартизацией в области электротехники, представила в качестве официального стандарта систему названий и символов единиц измерения для использования в области обработки и передачи данных. До недавнего времени при одновременном использовании десятичной и двоичной систем измерений один мегабайт мог быть равен как 1 млн байт (106), так и 1 048 576 байт (220). Стандартные сокращения единиц, используемые для измерения емкости магнитных и других накопителей, приведены в табл. 1.

В соответствии с новым стандартом 1 MiB (mebibyte) содержит 220 (1 048 576) байт, а 1 Мбайт (мегабайт) - 106 (1 000 000) байт. К сожалению, не существует общепринятого способа отличать двоичные кратные единицы измерения от десятичных. Другими словами, английское сокращение MB (или M) может обозначать как миллионы байтов, так и мегабайты.

Как правило, объемы памяти измеряются в двоичных единицах, но емкость накопителей - и в десятичных и в двоичных, что часто приводит к недоразумениям. Заметьте также, что в английском варианте биты (bits) и байты (Bytes) отличаются регистром первой буквы (она может быть строчной или прописной). Например, при обозначении миллионов битов используется строчная буква “b”, в результате чего единица измерения миллион битов в секунду обозначается Mbps, в то время как MBps означает миллион байтов в секунду.

Что такое жесткий диск

Самым необходимым и в то же время самым загадочным компонентом компьютера является накопитель на жестком диске. Как известно, он предназначен для хранения данных, и последствия его выхода из строя зачастую оказываются катастрофическими. Для правильной эксплуатации или модернизации компьютера необходимо хорошо представлять себе, что же это такое - накопитель на жестком диске.

Основными элементами накопителя являются несколько круглых алюминиевых или некристаллических стекловидных пластин. В отличие от гибких дисков (дискет), их нельзя согнуть; отсюда и появилось название жесткий диск (рис. 4). В большинстве устройств они несъемные, поэтому иногда такие накопители называются фиксированными (fixed disk). Существуют также накопители со сменными дисками, например устройства Iomega Zip и Jaz.

Новейшие достижения

Почти за 20 лет, прошедших с того времени, как жесткие диски стали привычными компонентами персональных компьютеров, их параметры радикально изменились. Чтобы дать некоторое представление о том, как далеко зашел процесс усовершенствования жестких дисков, приведем самые яркие факты.

Максимальная емкость 5,25-дюймовых накопителей увеличилась от 10 Мбайт (1982 год) до 180 Гбайт и больше для 3,5-дюймовых накопителей половинной высоты (Seagate Barracuda 180). Емкость 2,5-дюймовых дисководов с высотой не более 12,5 мм, которые используются в портативных компьютерах, выросла до 32 Гбайт (IBM Travelstar 32GH). Жесткие диски объемом менее 10 Гбайт в современных настольных компьютерах практически не используются.

Скорость передачи данных увеличилась от 85–102 Кбайт/с в компьютере IBM XT (1983 год) до 51,15 Мбайт/с в наиболее быстродействующих системах (Seagate Cheetah 73LP).

Среднее время поиска (т.е. время установки головки на нужную дорожку) уменьшилось от 85 мс в компьютере IBM XT (1983 год) до 4,2 мс в одном из самых быстродействующих на сегодняшний день дисководе (Seagate Cheetah X15).

В 1982 году накопитель емкостью 10 Мбайт стоил более 1500 долларов (150 долларов за мегабайт). В настоящее время, стоимость жестких дисков снизилась до половины цента за мегабайт.

Рис. 4. Вид накопителя на жестких дисках со снятой верхней крышкой

Принципы работы накопителей на жестких дисках

В накопителях на жестких дисках данные записываются и считываются универсальными головками чтения/записи с поверхности вращающихся магнитных дисков, разбитых на дорожки и секторы (512 байт каждый), как показано на рис. 5.

В накопителях обычно устанавливается несколько дисков, и данные записываются на обеих сторонах каждого из них. В большинстве накопителей есть по меньшей мере два или три диска (что позволяет выполнять запись на четырех или шести сторонах), но существуют также устройства, содержащие до 11 и более дисков. Однотипные (одинаково расположенные) дорожки на всех сторонах дисков объединяются в цилиндр (рис. 6). Для каждой стороны диска предусмотрена своя дорожка чтения/записи, но при этом все головки смонтированы на общем стержне, или стойке. Поэтому головки не могут перемещаться независимо друг от друга и двигаются только синхронно.

Жесткие диски вращаются намного быстрее, чем гибкие. Частота их вращения даже в большинстве первых моделей составляла 3 600 об/мин (т.е. в 10 раз больше, чем в накопителе на гибких дисках) и до последнего времени была почти стандартом для жестких дисков. Но в настоящее время частота вращения жестких дисков возросла. Например, в портативном компьютере Toshiba диск объемом 3,3 Гбайт вращается с частотой 4 852 об/мин, но уже существуют модели с частотами 5 400, 5 600, 6 400, 7 200, 10 000 и даже 15 000 об/мин. Скорость работы того или иного жесткого диска зависит от частоты его вращения, скорости перемещения системы головок и количества секторов на дорожке.

При нормальной работе жесткого диска головки чтения/записи не касаются (и не должны касаться!) дисков. Но при выключении питания и остановке дисков они опускаются на поверхность. Во время работы устройства между головкой и поверхностью вращающегося диска образуется очень малый воздушный зазор (воздушная подушка). Если в этот зазор попадет пылинка или произойдет сотрясение, головка “столкнется” с диском, вращающимся “на полном ходу”. Если удар будет достаточно сильным, произойдет поломка головки. Последствия этого могут быть разными - от потери нескольких байтов данных до выхода из строя всего накопителя. Поэтому в большинстве накопителей поверхности магнитных дисков легируют и покрывают специальными смазками, что позволяет устройствам выдерживать ежедневные “взлеты” и “приземления” головок, а также более серьезные потрясения.


Рис. 5. Дорожки и секторы накопителя на жестких дисках

Рис. 6. Цилиндр накопителя

на жестких дисках


Дорожки и секторы

Дорожка - это одно “кольцо” данных на одной стороне диска. Дорожка записи на диске слишком велика, чтобы использовать ее в качестве единицы хранения информации. Во многих накопителях ее емкость превышает 100 тыс. байт, и отводить такой блок для хранения небольшого файла крайне расточительно. Поэтому дорожки на диске разбивают на нумерованные отрезки, называемые секторами.

Количество секторов может быть разным в зависимости от плотности дорожек и типа накопителя. Например, дорожка гибких дисков может содержать от 8 до 36 секторов, а дорожка жесткого диска - от 380 до 700. Секторы, создаваемые с помощью стандартных программ форматирования, имеют емкость 512 байт, но не исключено, что в будущем эта величина изменится.

Нумерация секторов на дорожке начинается с единицы, в отличие от головок и цилиндров, отсчет которых ведется с нуля. Например, дискета HD (High Density) формата 3,5 дюйма (емкостью 1,44 Мбайт) содержит 80 цилиндров, пронумерованных от 0 до 79, в дисководе установлены две головки (с номерами 0 и 1), и каждая дорожка цилиндра разбита на 18 секторов (1–18).

При форматировании диска в начале и конце каждого сектора создаются дополнительные области для записи их номеров, а также прочей служебной информации, благодаря которой контроллер идентифицирует начало и конец сектора. Это позволяет отличать неформатированную и форматированную емкости диска. После форматирования емкость диска уменьшается, и с этим приходится мириться, поскольку для обеспечения нормальной работы накопителя некоторое пространство на диске должно быть зарезервировано для служебной информации.

В начале каждого сектора записывается его заголовок (или префикс - prefix portion), по которому определяется начало и номер сектора, а в конце - заключение (или суффикс - suffix portion), в котором находится контрольная сумма (checksum), необходимая для проверки целостности данных. В большинстве новых дисководов вместо заголовка используется так называемая запись No-ID, вмещающая в себя больший объем данных. Помимо указанных областей служебной информации, каждый сектор содержит область данных емкостью 512 байт.

Для наглядности представьте, что секторы - это страницы в книге. На каждой странице содержится текст, но им заполняется не все пространство страницы, так как у нее есть поля (верхнее, нижнее, правое и левое). На полях помещается служебная информация, например названия глав (в нашей аналогии это будет соответствовать номерам дорожек и цилиндров) и номера страниц (что соответствует номерам секторов). Области на диске, аналогичные полям на странице, создаются во время форматирования диска; тогда же в них записывается и служебная информация. Кроме того, во время форматирования диска области данных каждого сектора заполняются фиктивными значениями. Отформатировав диск, можно записывать информацию в области данных обычным образом. Информация, которая содержится в заголовках и заключениях сектора, не меняется во время обычных операций записи данных. Изменить ее можно, только переформатировав диск.

Форматирование дисков

Различают два вида форматирования диска:

ü физическое, или форматирование низкого уровня;

ü логическое, или форматирование высокого уровня.

При форматировании гибких дисков с помощью программы Explorer Windows 9x или команды DOS FORMAT выполняются обе операции, но для жестких дисков эти операции следует выполнять отдельно. Более того, для жесткого диска существует и третий этап, выполняемый между двумя указанными операциями форматирования, - разбивка диска на разделы. Создание разделов абсолютно необходимо в том случае, если вы предполагаете использовать на одном компьютере несколько операционных систем. Физическое форматирование всегда выполняется одинаково, независимо от свойств операционной системы и параметров форматирования высокого уровня (которые могут быть различными для разных операционных систем). Это позволяет совмещать несколько операционных систем на одном жестком диске.

При организации нескольких разделов на одном накопителе каждый из них может использоваться для работы под управлением своей операционной системы либо представлять отдельный том (volume), или логический диск (logical drive). Том, или логический диск, - это то, чему система присваивает буквенное обозначение.

Таким образом, форматирование жесткого диска выполняется в три этапа.

1. Форматирование низкого уровня.

2. Организация разделов на диске.

3. Форматирование высокого уровня.

Доклад по физике

по теме:

“Магнитная запись.

Магнитные носители информации”


Технология записи информации на магнитные носители появилась сравни-тельно недавно - примерно в середине 20-го века (40-ые - 50-ые годы). Но уже нес-колько десятилетий спустя - 60-ые - 70-ые годы - это технология стала очень рас-пространённой во всём мире.

Очень давно появилась на свет первая грам-пластинка. Которая использова-лась в качестве носителя различных звуковых данных - на неё записывали различ-ные музыкальные мелодии, речь человека, песни.

Сама технология записи на пластинки была довольно простой. При помощи специального аппарата в специальном мяг-ком материале, виниле, делались засечки, ямки, полоски. И из этого получалась плас-тинка, которую можно было прослушать при помощи специального аппарата - патифона или проигрывателя. Патифон состоял из: ме-ханизма, вращающего пластинку вокруг сво-ей оси, иглы и трубки.

Приводился в действие механизм, вра-щающий пластинку, и ставилась игла на пластинку. Игла плавно плыла по канавкам, прорубленным в пластинке, издавая при этом различные звуки - в зависимости от глубингы канавки, её ширины, наклона и.т.д., используя явление резонанса. А после труба, находившаяся около самой иголки, усиливала звук, “высекаемый” иголкой. (рис. 1)

Почти такая же система и используется в современных (да и использовалась раньше тоже) устройствах считывания магнитной записи. Функции составных час-тей остались прежними, только поменялись сами составные части - вместо винило-вых пластинок теперь используются ленты с напылённым на них сверху слоем маг-нитных частиц; а вместо иголки - специальное считывающее устройство. А трубка, усиливающая звук, исчезла совсем, и на её место пришли динамики, использующие уже болдее новую технологию воспроизведения и усиления звуковых колебаний. А в некоторых отраслях, в которых применяются магнитные носители (например, в ком-пьютерах) пропала необходимость использования таких трубок.

Магнитная лента состоит из полоски плотного вещества, на которую напыляется слой ферромагнетиков. Именно на этот слой “запоминается” информация.

Процесс записи также похож на про-цессс записи на виниловые пластинки - при помощи магнитной индукционной вмес-то специального апарата.

На головку подаётся ток, который при-водит в действие магнит. Запись звука на плёнку происходит благодаря действию электромагнита на плёнку. Магнитное поле магнита меняется в такт со звуковыми колебаниями, и благодаря этому маленькие магнитные частички (домены) начинают менять своё местоположение на поверхности плёнки в определённом порядке, в за-висимости от воздействия на них магнитного поля, создаваемого электромагнитом.

А при воспроизведении записи наблюдается процесс обратный записи: намаг-ниченная лента возбуждает в магнитной головке электрические сигналы, которые после усиления поступают дальше в динамик. (рис. 2)

Данные, используемые в компьютерной технике, записываются на магнитные носители таким же образом, с той разницей, что для данных нужно меньше места на плёнке, чем для звука. Просто вся информация, записываемая на магнитный носи-тель в компьютерах, записывается в двоичной системе - если при чтении с носите-ля головка “чувствует” нахождение под собой домена, то это означает, что значение данной частички данных равно “1”, если не “чувствует”, то значение - “0”. А дальше уже система компьютера преобразует данные, записанные в двоичной системе, в более понятную для человека систему.

Сейчас в мире присутсвует множество различных типов магнитных носителей: дискеты для компьютеров, аудио- и видеокассеты, бабинные ленты, жёсткие диски внутри компьютеров и.т.д.

Но постепенно открываются новые законы физики, и вместе с ними - новые возможности записи информации. Уже несколько десятилетий назад появилось мно-жество носителей информации, базирующихся на новой технологии - считывания информации при помощи линз и лазерного луча. Но всё-равно технология магнит-ной записи просуществует ещё довольно долго из-за своего удобства в использова-нии.

ТИПЫ ВЗУ, (по критерию физической основы или технологии производства носителя)

Магнитные носители, -оптические, -флеш-память

Магнитные носители

Магнитные носители основаны на свойстве материалов находиться в двух состояниях: «не намагничено»-«намагничено», кодирующие 0 и 1. По поверхности носителя перемещается головка, которая может считывать состояние или изменять его. Запись данных на магнитный носитель осуществляется следующим образом. При изменении силы тока, проходящего через головку, происходит изменение напряженности динамического магнитного поля на поверхности магнитного носителя, и состояние ячейки меняется с «не намагничено» на «намагничено» или наоборот. Операция считывания происходит в обратном порядке. Намагниченные частички ферро магнитного покрытия являются причиной появления электрического тока. Электромагнитные сигналы, которые возникают при этом, усиливаются и анализируются, и делается вывод о значении 0 или 1.

Из-за контакта головки с поверхностью носителя через некоторое время носитель приходит в негодность.

Рассмотрим три типа магнитных носителей.

1. Накопители на жестких магнитных дисках (НЖМД; harddisk – жесткий диск) представляют собой несколько дисков с магнитным покрытием, нанизанные на шпиндель, в герметичном металлическом корпусе. При вращении диска происходит быстрый доступ головки к любой части диска.

2. Накопители на гибких магнитных дисках (НГМД; FDD – Floppy Disk Drive) предназначены для записи информации на переносные носители – дискеты.

3. Дисковые массивы RAID (Redundant Array of Inexpensive Disks – массив недорогих дисков с избыточностью) используются для хранения данных в суперкомпьютерах (мощных ЭВМ предназначенных для решения крупных вычислительных задач) и серверах (подключенных к сети ЭВМ, предоставляющих доступ к хранящимся в них данным). Массивы RAID – это несколько запоминающих устройств на жестких дисках, объединенные в один большой накопитель, обслуживаемый специальным RAID-контроллером.

Оптические носители

Оптические носители представляют собой компакт-диски диаметром. Оптические носители состоят из трех слоев:

1) поликарбонатная основа (внешняя сторона диска);

2) активный (регистрирующий) слой пластика с изменяемой фазой состояния;

3) тончайший отражающий слой (внутренняя сторона диска).

В центре компакт-диска находится круглое отверстие, надеваемое на шпиндель привода компакт-дисков.

Запись и считывание информации на компакт-диск осуществляется головкой, которая может испускать лазерный луч. Физический контакт между головкой и поверхностью диска отсутствует, что увеличивает срок службы компакт-диска. Фаза второго пластикового слоя, кристаллическая или аморфная, изменяется в зависимости от скорости остывания после разогрева поверхности лазерным лучом в процессе записи, выполняемой в приводе. При медленном остывании пластик переходит в кристаллическое состояние и информация стирается (записывается «0»); при быстром остывании элемент пластика переходит в аморфное состояние (записывается «1»).

1) ROM (Read Only Memory) – только для чтения; запись невозможна;

2) R (Recordable) – для однократной записи и многократного чтения; диск может быть однажды записан; записанную информацию изменить нельзя и она доступна только для чтения;

3) RW (ReWritable) – для многократной записи и чтения; информация на диске может быть многократно перезаписана. Эти типы дисков отличаются материалом, из которого изготовлен второй пластиковый слой.

Флэш-память

Флэш-память представляет собой микросхемы памяти, заключенные в пластиковый корпус, и предназначена для долговременного хранения информации с возможностью многократной перезаписи. Микросхемы флэш-памяти не имеют движущихся частей. При работе указатели в микросхеме перемещаются на начальный адрес блока, и затем байты данных передаются в последовательном порядке. При производстве микросхем флэш-памяти используются логические элементы NAND (И-НЕ). Количество циклов перезаписи флэш-памяти превышает 1 млн. В настоящее время размер флэш-памяти превышает 64 Гбайт (2011 г.), что позволило флэш-памяти вытеснить дискеты. Флэш-память подключается к порту USB.

"

 

 

Это интересно: