→ Системы цветов в компьютерной графике. Реферат: Системы цветов в компьютерной графике. В этом разделе

Системы цветов в компьютерной графике. Реферат: Системы цветов в компьютерной графике. В этом разделе

I . Системы цветов в компьютерной графике

1. Основные понятия компьютерной графики…………………2 стр.

2. Цвет и цветовые модели ……………………………………...4 стр.

3. Цветовая модель RGB…………………………………………5 стр.

4..Системы цветов HSB и HSL…………………………………..6 стр.

5. Цветовая модель HSB…………………………………………7 стр.

6. Цветовая модель CIE Lab……………………………………..8 стр.

7. Цветовая модель CMYK, цветоделение…………………….. 8 стр.

II . Практическая часть

1.Практический вопрос (создание рисунка в программе CorelDRAW)

Список используемой литературы …………………….............11стр.

Основные понятия компьютерной графики

В компьютерной графике с понятием разрешения обычно происходит больше всего путаницы, поскольку приходится иметь дело сразу с несколькими свойствами разных объектов. Следует четко различать: разрешение экрана, разрешение печатающего устройства и разрешение изображения. Все эти понятия относятся к разным объектам. Друг с другом эти виды разрешения никак не связаны пока не потребуется узнать, какой физический размер будет иметь картинка на экране монитора, отпечаток на бумаге или файл на жестком диске.

Разрешение экрана - это свойство компьютерной системы (зависит от монитора и видеокарты) и операционной системы (зависит от настроек Windows). Разрешение экрана измеряется в пикселах (точках) и определяет размер изображения, которое может поместиться на экране целиком.
Разрешение принтера - это свойство принтера, выражающее количество отдельных точек, которые могут быть напечатаны на участке единичной длины. Оно измеряется в единицах dpi (точки на дюйм) и определяет размер изображения при заданном качестве или, наоборот, качество изображения при заданном размере.

Разрешение изображения - это свойство самого изображения. Оно тоже измеряется в точках на дюйм - dpi и задается при создании изображения в графическом редакторе или с помощью сканера. Так, для просмотра изображения на экране достаточно, чтобы оно имело разрешение 72 dpi, а для печати на принтере - не меньше как 300 dpi. Значение разрешения изображения хранится в файле изображения.

Физический размер изображения определяет размер рисунка по вертикали (высота) и горизонтали (ширина) может измеряться как в пикселах, так и в единицах длины (миллиметрах, сантиметрах, дюймах). Он задается при создании изображения и хранится вместе с файлом. Если изображение готовят для демонстрации на экране, то его ширину и высоту задают в пикселах, чтобы знать, какую часть экрана оно занимает. Если изображение готовят для печати, то его размер задают в единицах длины, чтобы знать, какую часть листа бумаги оно займет.
Физический размер и разрешение изображения неразрывно связаны друг с другом. При изменении разрешения автоматически меняется физический размер.

При работе с цветом используются понятия: глубина цвета (его еще называют цветовое разрешение) и цветовая модель.
Для кодирования цвета пиксела изображения может быть выделено разное количество бит. От этого зависит то, сколько цветов на экране может отображаться одновременно. Чем больше длина двоичного кода цвета, тем больше цветов можно использовать в рисунке.

Глубина цвета - это количество бит, которое используют для кодирования цвета одного пиксела. Для кодирования двухцветного (черно-белого) изображения достаточно выделить по одному биту на представление цвета каждого пиксела. Выделение одного байта позволяет закодировать 256 различных цветовых оттенков. Два байта (16 битов) позволяют определить 65536 различных цветов. Этот режим называется High Color. Если для кодирования цвета используются три байта (24 бита), возможно одновременное отображение 16,5 млн цветов. Этот режим называется True Color. От глубины цвета зависит размер файла, в котором сохранено изображение.

Цвета в природе редко являются простыми. Большинство цветовых оттенков образуется смешением основных цветов. Способ разделения цветового оттенка на составляющие компоненты называется цветовой моделью . Существует много различных типов цветовых моделей, но в компьютерной графике, как правило, применяется не более трех. Эти модели известны под названиями: RGB, CMYK, НSB.

Цвет и цветовые модели.

Цвет аддитивный и субтрактивный.

Аддитивный цвет получается при соединении света разных цветов. В этой схеме отсутствие всех цветов представляет собой чёрный цвет, а присутствие всех цветов - белый. Схема аддитивных цветов работает с излучаемым светом, например, монитор компьютера.

В схеме субтрактивных цветов происходит обратный процесс. Здесь получается какой-либо цвет при вычитании других цветов из общего луча света. В этой схеме белый цвет появляется в результате отсутствия всех цветов, тогда как их присутствие даёт чёрный цвет. Схема субтрактивных цветов работает с отражённым светом.

В компьютерной графике применяют понятие цветового разрешения (другое название – глубина цвета). Оно определяет метод кодирования цветовой информации для ее воспроизведения на экране монитора. Для отображения черно- белого изображения достаточно двух бит (белый и черный цвета). Восьмиразрядное кодирование позволяет отобразить 256 градаций цветового тона. Два байта (16 бит) определяют 65 536 оттенков (такой режим называют High Color). При 24-разрядном способе кодирования возможно определить более 16,5 миллионов цветов (режим называют С практической точки зрения цветовому разрешению монитора близко понятие цветового охвата. Под ним подразумевается диапазон цветов, который можно воспроизвести с помощью того или иного устройства вывода (монитор, принтер, печатная машина и прочие). В соответствии с принципами формирования изображения аддитивным или субтрактивным методами разработаны способы разделения цветового оттенка на составляющие компоненты, называемые цветовыми моделями. В компьютерной графике в основном применяют модели RGB и HSB (для создания и обработки аддитивных изображений) и CMYK (для печати копии изображения на полиграфическом оборудовании). Цветовые модели расположены в трехмерной системе координат, образующей цветовое пространство, так как из законов Гроссмана следует, что цвет можно выразить точкой в трехмерном пространстве.

Первый закон Грассмана (закон трехмерности). Любой цвет однозначно выражается тремя составляющими, если они линейно независимы. Линейная независимость заключается в невозможности получить любой из этих трех цветов сложением двух остальных.

Второй закон Грассмана (закон непрерывности). При непрерывном изменении излучения цвет смеси также меняется непрерывно. Не существует такого цвета, к которому нельзя было бы подобрать бесконечно близкий.

Третий закон Грассмана (закон аддитивности). Цвет смеси излучений зависит только от их цвета, но не спектрального состава. То есть цвет (С) смеси выражается суммой цветовых уравнений излучений:

Cсумм=(R1+R2+…+Rn)R+(G1+G2+…+Gn)G+ (B1+B2+…+Bn)B.

Цветовая модель RGB

Монитор компьютера создает цвет непосредственно излучением света и, использует схему цветов RGB.

Цветовая модель RGB является аддитивной, то есть любой цвет представляет собой сочетание в различной пропорции трех основных цветов – красного (Red), зеленого (Green), синего (Blue). Она служит основой при создании и обработке компьютерной графики, предназначенной для электронного воспроизведения (на мониторе, телевизоре). Если с близкого расстояния посмотреть на экран монитора, то можно заметить, что он состоит из мельчайших точек красного, зелёного и синего цветов. Компьютер может управлять количеством света, излучаемого через любую окрашенную точку и, комбинируя различные сочетания любых цветов, может создать любой цвет. При наложении одного компонента основного цвета на другой яркость суммарного излучения увеличивается. Совмещение трех компонентов дает ахроматический серый цвет, который при увеличении яркости приближается к белому цвету. При 256 градационных уровнях тона черному цвету соответствуют нулевые значения RGB, а белому – максимальные, с координатами (255,255,255).

Будучи определена природой компьютерных мониторов, схема RGB является самой популярной и распространённой, но у неё есть недостаток: компьютерные рисунки не всегда должны присутствовать только на мониторе, иногда их приходится распечатывать, тогда необходимо использовать другую систему цветов - CMYK.

Системы цветов HSB и HSL

Системы цветов HSB и HSL базируется на ограничениях, накладываемых аппаратным обеспечением. В системе HSB описание цвета представляется в виде тона, насыщенности и яркости. В другой системе HSL задаётся тон, насыщенность и освещённость. Тон представляет собой конкретный оттенок цвета. Насыщенность цвета характеризует его относительную интенсивность или частоту. Яркость или освещённость показывают величину чёрного оттенка добавленного к цвету, что делает его более тёмным. Система HSB хорошо согласовывается с моделью восприятия цвета человеком, то есть он является эквивалентом длины волны света. Насыщенность - интенсивность волны, а яркость - общее количество света. Недостатком этой системы является то, что для работы на мониторах компьютера её необходимо преобразовать в систему RGB, а для четырехцветной печати в систему CMYK.

Цветовая модель HSB

Цветовая модель HSB разработана с максимальным учетом особенностей восприятия цвета человеком. Она построена на основе цветового круга Манселла. Цвет описывается тремя компонентами: оттенком (Hue), насыщенностью (Saturation) и яркостью (Brigfitness). Значение цвета выбирается как вектор, исходящий из центра окружности. Точка в центре соответствует белому цвету, а точки по периметру окружности – чистым спектральным цветам. Направление вектора задается в градусах и определяет цветовой оттенок. Длина вектора определяет насыщенность цвета. На отдельной оси, называемой ахроматической, задается яркость, при этом нулевая точка соответствует черному цвету. Цветовой охват модели HSB перекрывает все известные значения реальных цветов.

Модель HSB принято использовать при создании изображений на компьютере с имитацией приемов работы и инструментария художников. Существуют специальные программы, имитирующие кисти, перья, карандаши. Обеспечивается имитация работы с красками и различными полотнами. После создания изображения его рекомендуется преобразовать в другую цветовую модель, в зависимости от предполагаемого способа публикации.

Цветовая модель CIE Lab

В 1920 году была разработана цветовая пространственная модель CIE Lab (Communication Internationale de I"Eclairage – международная комиссия по совещанию. L, a, b – обозначения осей координат в этой системе). Система является аппаратно независимой и потому часто применяется для переноса данных между устройствами. В модели CIE Lab любой цвет определяется светлотой (L) и хроматическими компонентами: параметром а, изменяющимся в диапазоне от зеленого до красного, и параметром b, изменяющимся в диапазоне от синего до желтого. Цветовой охват модели CIE Lab значительно превосходит возможности мониторов и печатных устройств, поэтому перед выводом изображения, представленного в этой модели, его приходится преобразовывать. Данная модель была разработана для согласования цветных фотохимических процессов с полиграфическими. Сегодня она является принятым по умолчанию стандартом для программы Adobe Photoshop.

Цветовая модель CMYK, цветоделение

Данная система была широко известна задолго до того, как компьютеры стали использоваться для создания графических изображений. Для разделения цветов изображения на цвета CMYK применяют компьютеры, а для полиграфии разработаны их специальные модели. Преобразование цветов из системы RGB в систему CMYK сталкивается с рядом проблем. Основная сложность заключается в том, что в разных системах цвета могут меняться. У этих систем различна сама природа получения цветов и то, что мы видим на экране мониторов никогда нельзя точно повторить при печати. В настоящее время существуют программы, которые позволяет работать непосредственно в цветах CMYK. Программы векторной графики уже надёжно обладают этой способностью, а программы растровой графики лишь в последнее время стали предоставлять пользователям средства работы с цветами CMYK и точного управления тем, как рисунок будет выглядеть при печати.

Цветовая модель CMYK относится к субтрактивным, и ее используют при подготовке публикаций к печати. Цветовыми компонентами CMY служат цвета, полученные вычитанием основных из белого:

голубой (cyan) = белый - красный = зеленый + синий;

пурпурный (magenta) = белый - зеленый = красный + синий;

желтый (yellow) = белый - синий = красный + зеленый.

Такой метод соответствует физической сущности восприятия отраженных от печатных оригиналов лучей. Голубой, пурпурный и желтый цвета называются дополнительными, потому что они дополняют основные цвета до белого. Отсюда вытекает и главная проблема цветовой модели CMY – наложение друг на друга дополнительных цветов на практике не дает чистого черного цвета. Поэтому в цветовую модель был включен компонент чистого черного цвета. Так появилась четвертая буква в аббревиатуре цветовой модели CMYK (Cyan, Magenta, Yellow, blacK). Для печати на полиграфическом оборудовании цветное компьютерное изображение необходимо разделить на составляющие, соответствующие компонентам цветовой модели CMYK. Этот процесс называют цветоделением. В итоге получают четыре отдельных изображения, содержащих одноцветное содержимое каждого компонента в оригинале. Затем в типографии с форм, созданных на основе цветоделенных пленок, печатают многоцветное изображение, получаемое наложением цветов CMYK.

Индексированный цвет, работа с палитрой

Все описанные ранее системы цветов имели дело со всем спектром цветов. Индексированные палитры цветов - это наборы цветов, из которых можно выбрать необходимый цвет. Преимуществом ограниченных палитр является то, они что занимают гораздо меньше памяти, чем полные системы RGB и CMYK. Компьютер создаёт палитру цветов и присваивает каждому цвету номер от 1 до 256. Затем при сохранении цвета отдельного пиксела или объекта компьютер просто запоминает номер, который имел этот цвет в палитре. Для запоминания числа от 1 до 256 компьютеру необходимо всего 8 бит. Для сравнения полный цвет в системе RGB занимает 24 бита, а в системе CMYK - 32.

Список используемой литературы:

1.Компьютерная графика. Порев В.Н,

2.Основы компьютерной графики. Сергеев А. П., Кущенко С.В

3. Компьютерная графика. Динамика, реалистические изображения. Е.В.Шикин, А.В.Боресков


Понятия света и цвета в компьютерной графике являются основополагающими. Обычно свет представляет собой непрерывный поток волн с различными длинами и различными амплитудами. Такой свет можно характеризовать энергетической спектральной кривой (рис. 2.2), где само значение функции представляет собой вклад волн с длиной волны  в общий волновой поток.

Рис. 2.2. Спектральная кривая света

Ощущение цвета возникает в мозге при возбуждении и торможении цветочувствительных клеток - рецепторов глазной сетчатки человека, колбочках. У человека существует три вида колбочек - «красные», «зелёные» и «синие», соответственно. Светочувствительность колбочек невысока, поэтому для хорошего восприятия цвета необходима достаточная освещённость или яркость. Каждое цветовое ощущение у человека может быть представлено в виде суммы ощущений этих трех цветов.

Основными характеристиками цвета являются цветовой тон, насыщенность, яркость.

Определение 2.6. Цветовой тон – атрибут визуального восприятия, согласно которому область кажется обладающей одним из воспринимаемых цветов (красного(R ) , зелёного(G ) или синего(В )). Является основной цветовой характеристикой.

Определение 2.7. Насыщенность – характеристика, выражаемая долей присутствия белого цвета. В идеально чистом цвете примесь белого отсутствует. Если, например, к чистому красному цвету добавить в определенной пропорции белый цвет, то получится светлый бледно-красный цвет.

Определение 2.8. Яркость – характеристика, определяемая энергией, интенсивностью светового излучения. Выражает количество воспринимаемого света.

Обыкновенный цвет (солнца, лампочки) состоит из всех цветов радуги. Если пропустить его через призму, то он разложится в цветной спектр радуги. Эти цвета представляют частоты электромагнитных колебаний, которые представляются невооруженным глазом.

Различают излучаемый и отраженный свет. Излучаемый свет - свет, выходящий из активного источника, содержит в себе все цвета. Отраженный свет может содержать все цвета, их комбинацию или только один цвет. Так как цвет может получиться в процессе излучения и поглощения, то существуют два противоположных метода его описания:

Система аддитивных цветов;

Система субтрактивных цветов.

Цветовая модель RGB. Аддитивный цвет получается при соединении лучей света разных цветов. Отсутствие всех цветов в этой системе есть черный цвет. Присутствие всех цветов – белый цвет. Эта система работает с излучаемым цветом, например, от монитора компьютера. В этой системе используется три основных цвета: красный, зеленый, синий (RGB). Система цветов RGB. Наиболее распространена и популярна. Используется в мониторах.

Цветовая модель CMY. В системе субтрактивных цветов происходит обратный процесс. Определенный цвет получается вычитанием других цветов из общего луча света. Белый цвет появляется в результате отсутствия всех цветов, тогда как их присутствие дает черный цвет. Эта система работает с отраженным цветом.

В системе субтрактивных цветов основными являются голубой, пурпурный, желтый (CMY – Cyan, Magenta, Yellow). При их смешении предполагается, что должен получиться черный цвет. В действительности типографские краски поглощают свет не полностью, и поэтому комбинация трех основных цветов выглядит темно-коричневой. Эта система используется в основном в полиграфии. Преобразование рисунков из системы RGB в систему CMYK сталкивается с рядом проблем. Основная сложность в том, что в разных системах цвета могут меняться. В этих системах различна природа получения цветов, и поэтому то, что отображается на экране монитора никогда нельзя в точности повторить при печати. Процесс преобразования усложняется необходимостью корректировать несовершенство типографских красок.

Цветовая модель HSV. Рассмотренные выше цветовые модели так или иначе используют смешение некоторых основных цветов. Цветовую модель HSV, можно отнести к альтернативному типу.

Рис. 2.3. Цветовая модель HSV

В модели HSV (рис. 2.3) цвет описывается следующими параметрами: цветовой тон H (Hue), насыщенность S (Saturation), яркость, светлота V(Value). Значение H измеряется в градусах от 0 до 360, поскольку здесь цвета радуги располагаются по кругу в таком порядке: красный, оранжевый, желтый, зеленый, голубой, синий, фиолетовый. Значения S и V находятся в диапазоне (0…1).

Примеры кодирования цветов для модели HSV. При S=0 (т.е. на оси V) - серые тона. Значение V=0 соответствует черному цвету. Белый цвет кодируется как S=0, V=1. Цвета, расположенные по кругу напротив друг друга, т.е. отличающиеся по H на 180 º, являются дополнительными. Задание цвета с помощью параметров HSV достаточно часто используется в графических системах, причем обычно показывается развертка конуса.

Цветовая модель HSV удобна для применения в тех графических редакторах, которые ориентированы не на обработку готовых изображений, а на их создание своими руками. Существуют такие программы, которые позволяют имитировать различные инструменты художника (кисти, перья, фломастеры, карандаши), материалы красок (акварель, гуашь, масло, тушь, уголь, пастель) и материалы полотна (холст, картон, рисовая бумага и пр.).

Существуют и другие цветовые модели, построенные аналогично HSV, например модели HLS (Hue, Lighting, Saturation) и HSB также использует цветовой конус. В модели HSB тоже три компонента: оттенок цвета (Hue), насыщенность цвета (Saturation) и яркость цвета (Brightness). Регулируя их, можно получить столь же много произвольных цветов, как и при работе с другими моделями.

Цветовая модель Lab. Все вышеперечисленные модели описывают цвет тремя параметрами и в достаточно широком диапазоне. Теперь рассмотрим цветовую модель, в которой цвет задается одним числом, но уже для ограниченного диапазона цветов (оттенков).

На практике часто используются черно-белые (серые) полутоновые изображения. Серые цвета в модели RGB описываются одинаковыми значениями компонентов, т.е. r i = g i = b i . Таким образом, для серых изображений нет необходимости использовать тройки чисел - достаточно и одного числа. Это позволяет упростить цветовую модель. Каждая градация определяется яркостью Y. Значение Y=0 соответствует черному цвету, максимальное значение Y – белому.

Для преобразования цветных изображений, представленных в системе RGB, в градации серого используют соотношение

Y = 0,299R + 0,587G + 0,114B,

где коэффициенты при R, G и B учитывают различную чувствительность зрения к соответствующим цветам и, кроме того, их сумма равна единице.

Очевидно, что обратное преобразование R =Y, G =Y, B =Y не даст никаких других цветов, кроме градаций серого.

Разнообразие моделей обусловлено различными областями их использования. Каждая из цветовых моделей была разработана для эффективного выполнения отдельных операций: ввода изображений, визуализаций на экране, печати на бумаге, обработки изображений, сохранения в файлах, колориметрических расчетов и измерений. Преобразование из одной модели в другую может привести к искажению цветов изображения.

Контрольные вопросы и задания

1. Какие виды представления видеоинформации Вы знаете?

2. Что представляет собой битовая глубина?

3. Что такое разрешающая способность растра?

4. Какие характеристики влияют на размер изображения?

5. В чем особенность масштабирования растровых и векторных изображений?

6. Назовите основные характеристики цвета?

7. Какие цветовые системы Вы знаете?

8. Дайте определение аддитивной системе цветов. В каких устройствах она используется?

9. Что представляет собой система субтрактивных цветов?

10. Перечислите альтернативные цветовые системы.

Цвет и свет в компьютерной графике

Человек является трихроматом - сетчатка глаза имеет 3 вида рецепторов света, ответственных за цветное зрение (колбочки). Каждый вид колбочек реагирует на определенный диапазон видимого спектра. Отклик, вызываемый в колбочках светом определѐнного спектра называется цветовым стимулом , при этом свет с разными спектрами может иметь один и тот же цветовой стимул, и таким образом восприниматься одинаково человеком. Это явление называется метамерией - два излучения с разными спектрами, но одинаковыми цветовыми стимулами будут неразличимы человеком. Можно определить цветовое пространство стимулов как евклидово пространство, если задать координаты x, y, z в качестве значений стимулов, соответствующих отклику

колбочек длинно-волнового (L), средне-волнового (M) и коротко-волнового (S) диапазона оптического спектра. Начало координат (S, M, L) = (0, 0, 0) будет представлять чѐрный цвет.

Цветовая модель - это описание цветовых оттенков для представления на экране монитора и при печати на принтере.

Аддитивная цветовая модель RGB

Аддитивный (от англ. «add - «присоединять») цвет получается при объединении (суммировании) трех основных цветов - красного, зеленого и синего. Если интенсивность каждого из них достигает 100%, то получается белый цвет. Отсутствие всех трех цветов дает черный цвет.

стр. 2 из 15

КОМПЬЮТЕРНАЯ ГЕОМЕТРИЯ И ГРАФИКА

Аддитивную цветовую модель, используемую в компьютерных мониторах, принято обозначать аббревиатурой RGB (Red - красный, Green - зеленый, Blue

Синий). Изменяя интенсивность свечения цветных точек, можно создать большое многообразие оттенков.

красный + зеленый - желтый; красный + синий - пурпурный; зеленый + синий - голубой; красный + зеленый + синий = белый.

На рисунке показаны различные комбинации красного, зеленого и синего.

Формирование собственных цветовых оттенков в модели RGB

Графические редакторы, как правило, позволяют комбинировать требуемый цвет из 256 оттенков красного, 256 оттенков зеленого и 256 оттенков синего.

Таким образом, на экране компьютера можно получить 16 777 216 цветовых оттенков.

Диалоговое окно для формирования цветов в модели RGB программы

стр. 3 из 15

КОМПЬЮТЕРНАЯ ГЕОМЕТРИЯ И ГРАФИКА

Субтрактивная цветовая модель

В субтрактивной цветовой модели основными цветами являются голубой, пурпурный и желтый. Каждый из них поглощает (вычитает) определенные цвета из белого света, падающего на печатаемую страницу. Отсюда и название модели

Субтрактивная (от англ. « subtract* - «вычитать»). Вот как три основных цвета могут быть использованы для получения черного, красного, зеленого и синего цветов:

голубой + пурпурный + желтый = черный; голубой + пурпурный = синий; желтый + пурпурный = красный; желтый + голубой = зеленый.

Субтрактивное смешение цветов

Субтрактивная цветовая модель CMYK

Субтрактивную цветовую модель обозначают аббревиатурой CMYK (Cyan

Голубой, Magenta - пурпурный, Yellow - желтый, Black - черный. Чтобы не возникла путаница с «Вlue», для обозначения "Black" используется символ «К»).

Взаимосвязь аддитивной и субтрактивной цветовых моделей

Модель RGB работает с излучаемым светом, a CMYK - с отраженным. Если необходимо распечатать на принтере изображение, полученное на мониторе, специальная программа выполняет преобразование одной цветовой модели в другую.

CIE XYZ - линейная 3-компонентная цветовая модель, основанная на результатах измерения характеристик человеческого глаза. Построена на основе зрительных возможностей так называемого «стандартного наблюдателя», то есть гипотетического зрителя, возможности которого были тщательно изучены и

x = X/(X + Y + Z), y = Y/(X + Y + Z).

Обычно диаграмма Yxy используется для иллюстрации характеристик гамутов различных устройств воспроизведения цвета - дисплеев и принтеров.

Свойства диаграммы тональности

Свойства:

На диаграмме представлены все цвета, видимые среднестатистическому человеку

Все цвета, которые могут быть получены смешением любых двух, лежат на прямой между ними

Все цвета, которые могут быть получены смешением трех цветов,

лежат внутри треугольника Смешивая три данных реальных источника света, невозможно получить все цвета, видимые человеком

Трехмерное пространство

L* - яркость (lightness)

– L* =0 черный

– L* = 100 белый

а* - положение между фиолетовым и зеленым

– а* < 0 фиолетовый

– а* > 0 зеленый

b* - положение между желтым и синим

– b* < 0 желтый

– b* > 0 синий

стр. 6 из 15

КОМПЬЮТЕРНАЯ ГЕОМЕТРИЯ И ГРАФИКА

HSV (англ. Hue, Saturation, Value - тон, насыщенность, значение) или HSB (англ. Hue, Saturation, Brightness - оттенок, насыщенность, яркость) - цветовая модель, в которой координатами цвета являются:

Шкала оттенков - Hue

Hue - цветовой тон, (например, красный, зелѐный или сине-голубой). Варьируется в пределах 0-360°, однако иногда приводится к диапазону 0-100 или 0-1.

Saturation - насыщенность. Варьируется в пределах 0-100 или 0-1. Чем больше этот параметр, тем «чище» цвет, поэтому этот параметр иногда называют чистотой цвета. А чем ближе этот параметр к нулю, тем ближе цвет к нейтральному серому.

Value (значение цвета) или Brightness - яркость. Также задаѐтся в пределах

Модель была создана Элви Реем Смитом, одним из основателей Pixar, в 1978 году. Она является нелинейным преобразованием модели RGB.

Следует отметить, что HSV (HSB) и HSL - две разные цветовые модели.

Трѐхмерные визуализации пространства HSV

Простейший способ отобразить HSV в трѐхмерное пространство - воспользоваться цилиндрической системой координат. Здесь координата H определяется полярным углом, S - радиус-вектором, а V - Z-координатой. То есть, оттенок изменяется при движении вдоль окружности цилиндра, насыщенность - вдоль радиуса, а яркость - вдоль высоты. Несмотря на «математическую» точность, у такой модели есть существенный недостаток: на практике количество различимых глазом уровней насыщенности и оттенков уменьшается при приближении яркости (V) к нулю (то есть, на оттенках, близких к чѐрному). Также на малых S и V появляются существенные ошибки округления при переводе RGB в HSV и наоборот.

стр. 7 из 15

КОМПЬЮТЕРНАЯ ГЕОМЕТРИЯ И ГРАФИКА

Другой способ визуализации цветового пространства - конус. Как и в цилиндре, оттенок изменяется по окружности конуса. Насыщенность цвета возрастает с отдалением от оси конуса, а яркость - с приближением к его основанию. Иногда вместо конуса используется шестиугольная правильная пирамида.

Визуализация HSV в прикладном ПО

Цветовой круг

Эта визуализация состоит из цветового круга (то есть, поперечного сечения цилиндра) и движка яркости (высоты цилиндра). Эта визуализация получила широкую известность по первым версиям ПО компании Corel. На данный момент применяется чрезвычайно редко, чаще используют кольцевую модель

стр. 8 из 15

КОМПЬЮТЕРНАЯ ГЕОМЕТРИЯ И ГРАФИКА

Модель HSV часто используется в программах компьютерной графики, так как удобна для человека. Следовательно необходимо развернуть трѐхмерное пространства HSV на двухмерный экран компьютера

Цветовое кольцо

Оттенок представляется в виде радужного кольца, а насыщенность и значение цвета выбираются при помощи вписанного в это кольцо треугольника. Его вертикальная ось, как правило, регулирует насыщенность, а горизонтальная позволяет изменять значение цвета. Таким образом, для выбора цвета нужно сначала указать оттенок, а потом выбрать нужный цвет из треугольника.

Цветовые пространства

Исходные (reference) цветовые пространства:

– CIE XYZ

– CIE L*a*b

стр. 9 из 15

КОМПЬЮТЕРНАЯ ГЕОМЕТРИЯ И ГРАФИКА

CIE RGB (не используется)

Цветовые модели:

– RGB

– CMYK

– HSV

Производные цветовые пространства:

– sRGB (RGB)

– Adobe RGB (RGB)

Пространство sRGB

Создано Microsoft, Hewlett-Packard

Стандартизировано в 1996г.

На данный момент широко используется:

– Мониторы

– Фотоаппараты

Если для изображения не указано цветовое пространство, можно считать, что это sRGB

Недостатки: исходные цвета сильно внутри видимой человеком области

Пространство Adobe RGB

Разработано Adobe в 1998

Цель – иметь возможность работать на мониторе с большинством цветов, доступных в модели CMYK на принтерах

Более широкий диапазон передаваемых цветов (gamut)

Проблема: 8 бит на цвет может не хватать

стр. 10 из 15

КОМПЬЮТЕРНАЯ ГЕОМЕТРИЯ И ГРАФИКА

Цветовая температура

Цветовая температура (Тс) - характеристика хода интенсивности излучения источника света как функция длины волны в оптическом диапазоне.

Единицы измерения

Цветовая температура источника света:

характеризует спектральный состав излучения источника света;

является основой объективности впечатления от цвета отражающих объектов и источников света.

Шкала цветовых температур распространѐнных источников света

800 К - начало видимого темно-красного свечения раскалѐнных тел 2000 К - свет пламени свечи, 2360 К - лампа накаливания, вакуумная,

2800-2854 К - газонаполненные (газополные) лампы накаливания с вольфрамовой спиралью, 3200-3250 К - типичные киносъѐмочные лампы,

5500 К - дневной свет, прямой солнечный, 6500 К - стандартный источник дневного белого света, он близок к полуденному солнечному свету,

7500 К - дневной свет, с большой долей рассеянного от чистого голубого неба, 100000 К - цвет источника с «бесконечной температурой»

Ахроматический и хроматический цвет

Так как свет является еще и волной, то, разумеется, он имеет длину волны. Длин волн бесконечное множество, но наш глаз в состоянии регистрировать только их небольшой диапазон, известный под названием видимой части спектра.

Цвет имеет психофизиологическую и психофизическую природу. Цвет предмета зависит не только от самого предмета, но также и от источника света, освещающего предмет и от системы человеческого видения. Некоторые предметы отражают свет (стена), другие его пропускают (стекло). Если поверхность, которая отражает только синий цвет, освещается красным светом, она будет казаться черной. Если источник зеленого света рассматривается через стекло, пропускающее только красный свет, он тоже покажется черным.

Зрительная система человека воспринимает электромагнитную энергию с длинами волн от 400 до 700 нм как видимый свет.

Источник или объект являются ахроматическим, если наблюдаемый свет содержит все видимые длины волн в примерно равных количествах. Ахроматический источник кажется белым, а свет от него - белым, черным или серым. Ахроматический свет - это то, что мы видим на экране черно-белого телевизора. Белыми выглядят объекты, ахроматически отражающие более 80 % света белого источника, а черными - менее 3 %. Промежуточные значения дают различные оттенки серого цвета.

Ахроматический свет характеризуется интенсивностью (яркостью). Свет называется хроматический, если он содержит длины волн в произвольных неравных количествах. Если длины волн сконцентрированы у верхнего края видимого спектра, то свет кажется красным, если у нижнего - то синим.

Но сама по себе эл/м энергия определенной длины волны не имеет никакого цвета. Ощущение цвета возникает в результате преобразования физических явлений в глазу или мозге человека. Объект кажется цветным, если он отражает или пропускает свет лишь в узком диапазоне длин волн и поглощает все остальные.

Психофизиологическое представление света опр-ся:

1) цветовой тон

2) насыщенность

3) светлота

Цветовой тон позволяет различать цвета (к, з, с).

Насыщенность определяет степень ослабления (разбавления) данного цвета белым цветом и позволяет различать розовый цвет от красного, голубой от синего. У чистого цвета насыщенность = 100 % и уменьшается по мере добавления белого. Насыщенность ахроматического цвета = 0 %.

Светлота - это интенсивность, которая не зависит от цветового тона и насыщенности. Ноль - значит черный, более высокие значения характеризуют более яркие значения.

Психофизические определяющие цвета:

1) доминирующая длина волны

2) чистота

3) яркость.

Доминирующая длина волны определяет монохроматический цвет (рис. б ) Þ l = 520 нм ® зеленый.

Чистота характеризует насыщенность цвета и определяется отношением Е 1 и Е 2 . Е 1 - характеризует степень разбавления чистого цвета с l = 520 нм белым. Если Е 1 стремится к 0, то чистота - к 100 %, если Е 1 ­ стремится к Е 2 , то свет - к белому и чистота - к 0.

Яркость пропорциональна энергии света и рассматривается как интенсивность на единицу площади. Для ахроматического света яркость есть интенсивность.

Художники используют другие характеристики цвета:

1) разбелы

2) оттенки

Разбелы получаются при добавлении в чистый цвет белого, оттенки - черного, тона - и черного, и белого.

Обычно встречаются не чистые монохроматические цвета, а их смеси. В основе 3-х компонентной теории света лежит предположение о том, что в сетчатке глаза есть 3 типа чувствительных к свету колбочек, которые воспринимают соответственно зеленый, красный и синий цвета. Относительная чувствительность глаза максимальна для зеленого цвета и минимальна для синего. Если на все 3 типа колбочек воздействует одинаковый уровень энергетической яркости (энергия в единицу t), то свет кажется белым.

Цветовые модели

RGB цвета используются в телевидении и выводе изображений на экран монитора. Эти три цвета дают возможность воспроизвести большинство цветов, которые вы можете видеть. Большинство, но не все. Цвета, производимые монитором, не являются абсолютно чистыми, поэтому и все производимые ими оттенки не могут быть воспроизведены с точностью.

Более того, яркостный диапазон мониторов сильно ограничен. Человеческий глаз в состоянии различать гораздо больше градаций яркости. Максимальная яркость монитора едва ли соответствует и половине максимальной яркости, которую наш глаз способен различить. Это часто может привести к сложностям при отображении сцен из реального мира, которые содержат широкие вариации яркости. Например, фотография пейзажа с фрагментом неба и участками земли находящимися в полной тени.

При моделировании света на компьютере все три цвета обрабатываются отдельно, за исключением каких-либо нестандартных ситуаций, когда цвета не влияют друг на друга. Иногда полноцветные изображения получают путем последовательного просчета красного, зеленого и синего изображений и их дальнейшим комбинированием.

Обычно компьютеры оперируют со светом в виде величин, определяющих количество содержащихся в нем красного, зеленого и синего цветов. Например, белый - это равное количество всех трех, Желтый - равное количество красного и зеленого и полное отсутствие синего. Все цветовые оттенки можно визуально представить в виде куба, где по осям координат будут отложены соответствующие величины трех исходных цветов. Это и есть трехцветная световая модель (RGB Model).

Системы смешивания основных цветов

1. Аддитивная - красный зеленый синий (RGB)

2. Субтрактивная - голубой (cyan, точнее сине-зеленый),

пурпурный (magenta), желтый (yellow)

Цвета одной системы являются дополнением к другой. Дополнительный цвет - это разность белого и данного цвета (Г=Б-К, П=Б-З, Ж=Б-С).

Аддитивная цветовая система удобна для светящихся поверхностей (экраны ЭЛТ, цветовые лампы). Субтрактивная цветовая система используется для отражающих поверхностей (цветные печатные устройства, типографские краски, несветящиеся экраны).

Уравнение монохроматического цвета:

где C - цвет,

R, G, B - 3 потока света,

r, g, b - относительные количества потоков света (от 0 до 1).

Соотношение между двумя цветовыми системами можно выразить математически:

Цветовые пространства RGB и CMY 3-хмерны и условно их можно изобразить в виде куба;

Началом координат в цветном кубе RGB является черный цвет, а в CMY - белый. Ахроматические, т.е. серые цвета, в обеих моделях расположены по диагонали от Б до Ч.

Модели RGB и CMY аппаратно-ориентированы. Модель HVS ориентирована на пользователя. В основе лежат интуитивно принятые художниками понятия разбела, оттенка, тона.

Цветовая модель HSV

Смит предложил построить модель субъективного восприятия в виде объемного тела HVS

(Н - цветовой тон (Hue)

S - насыщенность (Saturation)

V - светлота (Value))

Если цветной куб RGB спроецировать на плоскость вдоль диагонали Б-Ч, получается шестиугольник с основными и дополнительными цветами в вершинах. Интенсивность возрастает от 0 в вершине до 1 на верхней грани. Насыщенность определяется расстоянием от оси, а тон - углом (0° - 360°), отсчитываемым от красного цвета. Насыщенность меняется от 0 на оси до 1 на границе шестиугольника.

Насыщенность зависит от цветового охвата (расстояние от оси до границы). При S=1 цвета полностью насыщены. Ненулевая линейная комбинация трех основных цветов не может быть полностью насыщена. Если S=0, Н неопределен, т.е. лежит на центральной оси и является ахроматическим (серым)

Чистые цвета у художников: V=1, S=1

Разбелы - цвета с увеличенным содержанием белого, т.е. с меньшим S (лежат на плоскости шестиугольника)

Оттенки - цвета с уменьшенным V (ребра от вершины)

Тон - цвета с уменьшенным S и с уменьшенным V.

Модель HLS

В основе цветной модели HLS, применяемой фирмой Textronix, лежит цветная система Оствальда.

Н - цветовой тон (Hue)

L - светлота (Lightness)

S - насыщенность (Saturation)

Модель п.с. двойной шестигранный конус. Цветной тон задается углом поворота вокруг вертикальной оси относительно красного цвета. Цвета следуют по периметру, как и в модели HVS. HLS - результат модификации HSV за счет вытягивания вверх белого цвета. Дополнение каждого цвета отстоит на 180° от этого цветового тона. Насыщенность измеряется в радиальном направлении от 0 до 1. светлота измеряется вертикально по оси от 0 (Ч) до 1 (Б).

Для ахроматических цветов S=0, а максимально насыщенные цветовые тона получаются при S=1, L=0,5.

Цилиндрическая цветовая модель

Используется цветовая система Манселла, основанная на наборе образцов света. Система Манселла - это стандарт восприятия. Цвет определяется:

Цветовым тоном

Насыщенностью

Светлотой

На центральной оси - значение интенсивности меняется от черного к белому. Цветовой тон определяется углом. Главное преимущество - одинаковые приращения насыщенности, тона и интенсивности вызывают ощущения одинаковых изменений при восприятии.

Цветовая гармония

Цветные дисплеи и устройства получения твердых копий позволяют создавать широкий диапазон цветов. Одни цветовые сочетания хорошо гармонируют друг с другом, другие - взаимно несовместимы. Как отбирать цвета, чтобы они гармонировали друг с другом?

Выбор цветов обычно определяется путем проведения гладкой траектории в цветовом пространстве и/или путем ограничения диапазона используемых цветов в цветовой модели плоскостями (или шестигранными конусами) постоянной насыщенности

Использование цветов одного и того же цветового тона

Использование двух дополнительных цветов и их смесей

Использование цветов постоянной светлоты

При выборе цветов случайным образом, они будут выглядеть слишком яркими. Смит провел эксперимент, где сетка 16´16 заполнялась цветами случайным образом и имела мало привлекательный вид.

Если рисунок включает несколько цветов, то в качестве фона надо использовать дополнение к одному из них. Если цветов много, то фон лучше сделать серым.

Если 2 примыкающих друг к другу цвета не гармонизируют, их можно разделить черной линией.

С физиологической точки зрения низкая чувствительность глаза к синему цвету означает, что на черном фоне трудно различить синий цвет. Отсюда следует, что желтый цвет (дополнительный к синему) трудно различить на белом (дополнительный к черному).

СЖАТИЕ ИЗОБРАЖЕНИЙ

Основные сведения

Стоит начать считывать цветные или полутоновые изображения сканером в ½ формата А4 и 100 Мб-ый диск будет заполнен меньше чем за 1 час (размер графического файла от 400 Кб до нескольких Мб). А сравнимый по качеству с телепередачей компьютерный фильм требует хранения данных объемом около 22 Мб/сек. Поэтому остро встала проблема сжатия и восстановления информации. Но сжатие файла сильно зависит от его структуры.

Принципиально сжатие делят на архивацию и компрессию. Первое - без потери качества, второе - с потерями. Разница между этими способами в том, что второй не подразумевает полного восстановления исходного сохраненного изображения в полном качестве. Но каким бы не был алгоритм компрессии данных, для работы с ним файл нужно проанализировать и распаковать, т. е. вернуть данные в исходный незапакованный вид для их быстрой обработки (обычно это происходит прозрачно для пользователя).

Архивация, или сжатие графических данных, возможно как для растровой, так и для векторной графики. При этом способе уменьшения данных, программа анализирует наличие в сжимаемых данных некоторых одинаковых последовательностей данных, и исключает их, записывая вместо повторяющегося фрагмента ссылку на предыдущий такой же (для последующего восстановления). Такими одинаковыми последовательностями могут быть пикселы одного цвета, повторяющиеся текстовые данные, или некая избыточная информация, которая в рамках данного массива данных повторяется несколько раз. Например, растровый файл, состоящий из подложки строго одного цвета (например, серого), имеет в своей структуре очень много повторяющихся фрагментов.

Компрессия (конвертирование) данных - это способ сохранения данных таким образом, при использовании которого не гарантируется (хотя иногда возможно) полное восстановление исходных графических данных. При таком способе хранения данных обычно графическая информация немного "портится" по сравнению с оригинальной, но этими искажениями можно управлять, и при их небольшом значении ими вполне можно пренебречь. Обычно файлы, сохраненные с использованием этого способа хранения, занимают значительно меньше дискового пространства, чем файлы, сохраненные с использованием простой архивации (сжатия). Суть методов сжатия с потерей качества - ликвидировать те места, которые человеческим глазом не воспринимаются или воспринимаются не очень хорошо, другими словами, практически не заметны. Чем выше степень компрессии, тем больше ущерб качеству. Оптимальное решение выбирается для конкретного случая с учетом применения.

Иногда не стоит прибегать к компрессии: проще уменьшить избыточный размер, цветность или разрешение. Результат тот же - уменьшение размера.

Цвет чрезвычайно важен в компьютерной графике как средство усиления зрительного впечатления и повышения информационной насыщенности изображения. Ощущение цвета формируется человеческим мозгом в результате анализа светового потока, попадающего на сетчатку глаза от излучающих или отражающих объектов. Считается, что цветовые рецепторы (колбочки) подразделяются на три группы, каждая из которых воспринимает только единственный цвет - красный, зеленый или синий. Нарушения в работе любой из групп приводит к явлению дальтонизма - искаженного восприятия цвета.

Световой поток формируется излучениями, представляющими собой комбинацию трех «чистых» спектральных цветов(красный, зеленый, синий - КЗС) и их производных (в англоязычной литературе используют аббревиатуру RGB - Red, Green, Blue). Для излучающих объектов характерно аддитивное цветовоспроизведение (световые излучения суммируются), для отражающих объектов - субтрактивное цветовоспроизведение (световые излучения вычитаются) . Примером объекта первого типа является электронно-лучевая трубка монитора, второго типа – полиграфический отпечаток.

Физические характеристики светового потока определяются параметрами мощности, яркости и освещенности .

Визуальные параметры ощущения цвета характеризуются светлотой, то есть различимостью участков, сильнее или слабее отражающих свет. Минимальную разницу между яркостью различимых по светлоте объектов называютпорогом. Величина порога пропорциональна логарифму отношения яркостей. Последовательность оптических характеристик объекта (расположенная по возрастанию или убыванию), выраженная в оптических плотностях или логарифмах яркостей, составляет градацию и является важнейшим инструментом для анализа и обработки изображения.

Для точного цветовоспроизведения изображения на экране монитора важным является понятие цветовой температуры . В классической физике считается, что любое тело с температурой, отличной от 0 градусов по шкале Кельвина, испускает излучение. С повышением температуры спектр излучения смещается от инфракрасного до ультрафиолетового диапазона, проходя через оптический.

Для идеального черного тела легко находится зависимость между длиной волны излучения и температурой тела. На основе этого закона, например, была дистанционно вычислена температура Солнца - около 6500 К. Для целей правильного цветовоспроизведения характерна обратная задача. То есть, монитор с выставленной цветовой температурой 6500 К должен максимально точно воспроизвести спектр излучения идеального черного тела, нагретого до такой же степени. Таким образом, стандартные значения цветовых температур используют в качестве всеобщего эталона, обеспечивающего одинаковое цветовоспроизведение на разных излучающих устройствах.


На практике зрение человека непрерывно подстраивается под спектр, характерный для цветовой температуры источника излучения. Например, на улице в яркий солнечный день цветовая температура составляет около 7000 К. Если с улицы зайти в помещение, освещенное только лампами накаливания (цветовая температура около 2800 К), то в первый момент свет ламп покажется желтым, белый лист бумаги тоже приобретет желтый оттенок. Затем происходит адаптация зрения к новому соотношению КЗС, характерному для цветовой температуры 2800 К, свет лампы и лист бумаги будут восприниматься как белые.

Насыщенность цвета показывает, насколько данный цвет отличается от монохроматического («чистого») излучения того же цветового тона. В компьютерной графике за единицу принимается насыщенность цветов спектральных излучений.

Ахроматические цвета (белый, серый, черный) характеризуется только светлотой. Хроматические цвета имеют параметры насыщенности, светлоты и цветового тона.

 

 

Это интересно: