→ Почему оно является реактивным сопротивлением. Активное и реактивное сопротивление. Полное сопротивление электрической цепи переменного тока

Почему оно является реактивным сопротивлением. Активное и реактивное сопротивление. Полное сопротивление электрической цепи переменного тока

Реактивным сопротивлением называется величина типа сопротивления, которая показывает соотношение тока и напряжения на реактивной (индуктивной, емкостной) нагрузке, не связанное с количеством потребляемой электрической энергии. Реактивное сопротивление характерно лишь для цепей переменного тока. Обозначается величина символом X, а ее единицей измерения является ом.

В отличие от активного сопротивления реактивное может быть как с положительным, так и отрицательным знаком, который соответствует тому знаку, которым сопровождается сдвиг фазы между напряжением и током. Если ток отстает от напряжения, он положителен, а если опережает, то отрицателен.

Виды и свойства реактивного сопротивления

Реактивное сопротивление может быть двух видов: индуктивного и емкостного. Первый из них характерен для соленоидов, трансформаторов, обмотки электродвигателя или генератора), а второй - для конденсаторов. Для определения соотношения между током и напряжением необходимо знать величину не только реактивного, но и активного сопротивления, оказываемого проводником переменному току, проходящему на нему. Первое из них дает лишь ограниченные физические данные об электрической цепи или электрическом устройстве.

Реактивное сопротивление создается за счет потери реактивной мощности – силы, затрачиваемой на создание магнитного поля в электрической цепи. Уменьшение реактивной мощности, вызывающее реактивное сопротивление, достигается за счет подключения к трансформатору устройства с активным сопротивлением.

Например, конденсатор, подключаемый к цепи переменного тока, успевает накапливать лишь ограниченный заряд перед изменением знака разности потенциалов на противоположный. Таким образом, ток не успевает упасть до нулевой отметки так, как в цепи постоянного тока. При низкой частоте в конденсаторе будет аккумулироваться меньший заряд, отчего конденсатор меньше противодействует внешнему току. Это создает реактивное сопротивление.

Бывают случаи, когда цепь имеет реактивные элементы, однако результирующее реактивное сопротивление в ней равно нулю Нулевая величина реактивного сопротивления подразумевает совпадение тока и напряжения по фазе, но если реактивное сопротивление больше или меньше нуля, между напряжением и током возникает разность фаз. Например, в RLC-цепи резонанс происходит в том случае, если реактивные импедансы ZL и ZC взаимоуничтожаются. При этом импеданс имеет равную нулю фазу.

Активное сопротивление препятствует портеканию тока, в результате чего энергия протекающих через него частиц падает и идёт на совершение работы, обычно это нагрев проводника. Иными словами энергия, выделяемая на активном сопротивлении, безвозвратно покидает систему, затрачивая энергию источника тока. С реактивным сложнее-энергия, выделяемая на реактивном сопротивлении, запасается в электрическом или магнитном поле вокруг проводника, а потом возвращается в сеть, не совершая никакой работы. Оно проявляется ТОЛЬКО при изменении протекающего тока или приложенного напряжения, и зависит от скорости этого изменения. Суть в том, что напряжение на ёмкости и ток, протекающий через катушку, не может меняется мгновенно, из-за запасения энергии происходит задержка, ток и напряжение работают не синфазно, а со сдвигом. Фактически, идеальный реактивный элемент не тратит энергии от источника, всё,что он запасёт, он отдаст обратно в сеть, но из-за сдвига создаёт некоторое сопротивление протекающему току, если тот меняется, не тратя его энергию.

На активном сопротивлении происходит преобразование энергии электрического тока в тепловую энергию и разогрев проводника.
На реактивном - преобразование энергии тока в энергию магнитного поля и обратно. Разогрева не происходит.

Электрического сопротивле­ние - величина, характеризующая противодействие элемента электрической цепи электрическому току. Сопро­тивление обусловлено преобразованием электрической энергии в другие виды энергии. В цепях переменного тока различают необратимое преобразование энергии и обмен энергией

между элементами электрической цепи. При необратимо преобразовании электрической энер­гии в другие виды энергии сопротивление элемента, на котором эти преобразования происходят, называется активным, а в случае обмена энергией между источ­ником и элементом цепи - реактивным сопротив­лением.

В электрической цепи переменного токасуществует два вида сопротивлений:активное и реактивное . Это является существенным отличием от цепей постоянного тока.

Активное сопротивление

При прохождении тока через элементы, имеющие активное сопротивление, потери выделяющейся мощности необратимы. Примером может служить резистор, выделяющееся на нем тепло, обратно в электрическую энергию не превращается. Кроме резистора активным сопротивлением может обладать линии электропередач, соединительные провода, обмотки трансформатора или электродвигателя.

Отличительной чертой элементов имеющих чисто активное сопротивление – это совпадение по фазе тока и напряжения, поэтому вычислить его можно по формуле

Активное сопротивление зависит от физических параметров проводника, таких как материал, площадь сечения, длина, температура.

Реактивное сопротивление

При прохождении переменного тока через реактивные элементы возникает реактивное сопротивление. Оно обусловлено в первую очередь ёмкостями и индуктивностями.

Индуктивностью в цепи переменного тока обладает катушка индуктивности, причём в идеальном случае, активным сопротивлением её обмотки пренебрегают. Реактивное сопротивление катушки переменному току создаётся благодаря её ЭДС самоиндукции. Причем с ростом частоты тока, сопротивление также растёт.

Реактивное сопротивление катушки зависит от частоты тока и индуктивности катушки

Конденсатор обладает реактивным сопротивлением благодаря своей ёмкости. Его сопротивление с увеличением частоты тока уменьшается, что позволяет его активно использовать в электронике в качестве шунта переменной составляющей тока.

Треугольник сопротивлений

Цепи переменного тока обладают полным сопротивлением. Полное сопротивление цепи определяется как сумма квадратов активного и реактивного сопротивлений

Графическим изображением этого выражения служит треугольник сопротивлений , который можно получить в результате расчёта последовательной RLC-цепи. Выглядит он следующим образом:

На треугольнике видно, что катетами являются активное и реактивное сопротивление, а полной сопротивление гипотенуза.

Сопротивление, оказываемое проводником проходящему на нему переменному току, называется активным сопротивлением .

Если какой-либо потребитель не содержит в себе индуктивности и емкости (лампочка накаливания, нагревательный прибор), то он будет являться для переменного тока также активным сопротивлением.

Активное сопротивление зависит от частоты переменного тока, возрастая с ее увеличением.

Однако многие потребители обладают индуктивными и емкостными свойствами при прохождении через них переменного тока. К таким потребителям относятся трансформаторы, дроссели, электромагниты, конденсаторы, различного рода провода и многие другие.

При прохождении через них переменного тока необходимо учитывать не только активное, но и реактивное сопротивление , обусловленное наличием, в потребителе индуктивных и емкостных свойств его.

Активное сопротивление определяет действительную часть импеданса:

Где - импеданс, - величина активного сопротивления, - величина реактивного сопротивления, - мнимая единица.

Активное сопротивление - сопротивление электрической цепи или её участка, обусловленное необратимыми превращениями электрической энергии в другие виды энергии(в тепловую энергию)

Реакти́вное сопротивле́ние - электрическое сопротивление, обусловленное передачей энергии переменным током электрическому или магнитному полю (и обратно).

Величина реактивного сопротивления может быть выражена через величины индуктивного и ёмкостного сопротивлений:

Величина полного реактивного сопротивления

Индуктивное сопротивление () обусловлено возникновением ЭДС самоиндукции в элементе электрической цепи.

Ёмкостное сопротивление ().

Здесь - циклическая частота

Полное сопротивление цепи при переменном токе:

z = r 2 + x 2 = r 2 +(x L −x C) 2

Билет №12.

1. 1) Согласование генератора с нагрузкой - обеспечение требуемой величины активного эквивалентного сопротивления нагрузки генераторной лампы, R э, при всех возможных значениях входного сопротивления антенного фидера, которое зависит от его волнового сопротивления и коэффициента бегущей волны (КБВ)

Согласование (в электронике) сводится к правильному выбору сопротивлений генератора (источника), линии передачи и приёмника (нагрузки). Идеального Согласование (в электронике) между линией и нагрузкой можно достичь при равенстве волнового сопротивления линии r полному сопротивлению нагрузки Zh = RH + j ХН, или при RH= r и XH= 0, где RH -активная часть полного сопротивления, XH - его реактивная часть. В этом случае в передающей линии устанавливается режим бегущих волн и характеризующий их коэффициент стоячей волны (КСВ) равен 1. Для линии с пренебрежимо малыми потерями электрической энергии Согласование и, благодаря ему, максимально эффективная передача энергии из генератора в нагрузку достигаются при условии, что полные сопротивления генератора Zr и нагрузки ZH являются комплексно-сопряжёнными, т. е. Zr = Z*H, или Rr = r = R Н =Xr- XH. В этом случае реактивное сопротивление цепи равно нулю, и соблюдаются условия резонанса, способствующие повышению эффективности работы радиотехнических систем (улучшается использование частотных диапазонов, повышается помехозащищенность, снижаются частотные искажения радиосигналов и т.п.). Оценку качества Согласование (в электронике) производят, измеряя коэффициент отражения и КСВ. Практически Согласование (в электронике) считают оптимальным, если в рабочей полосе частот КСВ не превышает 1,2-1,3 (в измерительных приборах 1,05). В отдельных случаях косвенными показателями Согласование (в электронике) могут служить реакции параметров генератора (частоты, мощности, уровня шумов) на изменение нагрузки, наличие электрических пробоев в линии, разогрев отдельных участков линии.

При таком режиме работы в приёмнике выделяется наибольшая мощность, равная половине мощности источника. В этом случае К.П.Д. =0,5. Такой режим используется в измерительных цепях, устройствах средств связи.

При передаче больших мощностей, например по высоковольтным линиям электропередач, работа в согласованном режиме, как правило, недопустима.

— электротехническая величина, которая характеризует свойство материала препятствовать протеканию электрического тока. В зависимости от вида материала, сопротивление может стремиться к нулю — быть минимальным (мили/микро омы — проводники, металлы), или быть очень большим (гига омы — изоляция, диэлектрики). Величина обратная электрическому сопротивлению — это .

Единица измерения электрического сопротивления — Ом . Обозначается буквой R. Зависимость сопротивления от тока и в замкнутой цепи определяется .

Омметр — прибор для прямого измерения сопротивления цепи. В зависимости от диапазона измеряемой величины, подразделяются на гигаомметры (для больших сопротивление — при измерении изоляции), и на микро/милиомметры (для маленьких сопротивлений — при измерении переходных сопротивлений контактов, обмоток двигателей и др.).

Существует большое разнообразие омметров по конструктиву разных производителей, от электромеханических до микроэлектронных. Стоит отметить, что классический омметр измеряет активную часть сопротивления (так называемые омики).

Любое сопротивление (металл или полупроводник) в цепи переменного токаимеет активную и реактивную составляющую. Сумма активного и реактивного сопротивления составляют полное сопротивление цепи переменного тока и вычисляется по формуле:

где, Z — полное сопротивление цепи переменного тока;

R — активное сопротивление цепи переменного тока;

Xc — емкостное реактивное сопротивление цепи переменного тока;

(С- емкость, w — угловая скорость переменного тока)

Xl — индуктивное реактивное сопротивление цепи переменного тока;

(L- индуктивность, w — угловая скорость переменного тока).

Активное сопротивление — это часть полного сопротивления электрической цепи, энергия которого полностью преобразуется в другие виды энергии (механическую, химическую, тепловую). Отличительным свойством активной составляющей — полное потребление всей электроэнергии (в сеть обратно в сеть энергия не возвращается), а реактивное сопротивление возвращает часть энергии обратно в сеть (отрицательное свойство реактивной составляющей).

Физический смысл активного сопротивления

Каждая среда, где проходят электрические заряды, создаёт на их пути препятствия (считается, что это узлы кристаллической решётки), в которые они как-бы ударяются и теряют свою энергию, которая выделяется в виде тепла.

Таким образом, происходит падение (потеря электрической энергии), часть которого теряется из-за внутреннего сопротивления проводящей среды.

Численную величину, характеризующую способность материала препятствовать прохождению зарядов и называют сопротивлением. Измеряется оно в Омах (Ом) и является обратно пропорциональной электропроводности величиной.

Разные элементы периодической системы Менделеева имеют различные удельные электрические сопротивления (р), например, наименьшим уд. сопротивлением обладают серебро (0,016 Ом*мм2/м), медь (0,0175 Ом*мм2/м), золото (0,023) и алюминий (0,029). Именно они применяются в промышленности в качестве основных материалов, на которых строится вся электротехника и энергетика. Диэлектрики, напротив, обладают высоким уд. сопротивлением и используются для изоляции.

Сопротивление проводящей среды может значительно изменяться в зависимости от сечения, температуры, величины и частоты тока. К тому же, разные среды обладают различными носителями зарядов (свободные электроны в металлах, ионы в электролитах, «дырки» в полупроводниках), которые являются определяющими факторами сопротивления.

Физический смысл реактивного сопротивления

В катушках и конденсаторах при подаче происходит накопление энергии в виде магнитных и электрических полей, что требует некоторого времени.

Магнитные поля в сетях переменного тока изменяются вслед за меняющимся направлением движения зарядов, при этом оказывая дополнительное сопротивление.

Человек уже давно применяет для своих нужд электрическую, химическую, атомную энергию. Для технического описания любой из них имеется набор понятий, позволяющих характеризовать их суть. Например, такие признаки, как мощность, напряженность, плотность и др., широко применяются при изучении не только электрической, но и других известных видов энергии. Одним из таких универсальных понятий является широко применяемый в электричестве термин «сопротивление». В других областях имеются его аналоги - поглощение, рассеяние, отражение и т.д. «Сопротивление» - это, фактически, и есть характеристика потерь энергетического поля. Цель науки и техники в том и состоит, чтобы определить, в чем состоит причина сопротивления.

Сопротивление в электрических цепях имеет двоякую сущность - говорят, активное и реактивное сопротивление. Для проводника электрическое сопротивление является основной характеристикой и обусловлено противодействием материала проводника перемещению носителей тока. Причины этого противодействия могут быть разными, чем и объясняется его разное название. Сопротивление всегда сопровождается превращением одного вида энергии в другие за счет уменьшения энергии основного источника. Для случая электрической энергии этот переход означает превращение энергии источника эдс в тепловую, магнитную или электрическую энергию.

Исторически, первым в биографии сопротивления было изучение активного сопротивления, которое обусловлено превращением энергии источника в нагрев проводника. Происходит это по той причине, что заряды (а это электроны) под действием поля эдс источника перемещаются по проводнику, образно говоря, «расталкивая» кристаллы или молекулы вещества. При этом взаимные обмен-передача энергии приводят к повышению температуры проводника, т.е. налицо преобразование электрической энергии в тепловую. Если источник эдс не меняет своей величины U и направления, то ток в цепи I называется постоянным, а сопротивление R такой цепи рассчитывают, исходя из закона Ома: R = U / I .

Сопротивление цепи постоянного тока может быть только активным. Реактивное сопротивление «дает о себе знать» только в цепях которые содержат вполне конкретную или емкость (конденсатор). Строго говоря, любой проводник имеет некоторую индуктивность и емкость, но обычно они столь ничтожно малы, что ими пренебрегают. Индуктивность и емкость при протекании по ним преобразуют их энергию в магнитное поле катушки или электрическое поле диэлектрика. Запасенная таким образом энергия, при перемене знака источника эдс, возвращается обратно в виде энергии движения зарядов, откуда и название - «реактивное сопротивление».

Индуктивность в цепи переменного тока «оказывает сопротивление» протекающему току через изменение тока, порожденное изменением эдс источника, приводит к изменению электромагнитного поля так, что оно пытается поддерживать ток в цепи за счет запасенной энергии магнитного поля. Мера запасенной энергии является мерой индуктивности цепи L, которая зависит от частоты f переменного тока. Реактивное сопротивление катушки индуктивности определяют по следующей формуле:

XL = 2 * π * f * L.

Накапливает путем заряда диэлектрика. При изменении величины и/или направления эдс источника напряжение на обкладках конденсатора поддерживается спадающим током, причем тем дольше, чем больше емкость С конденсатора.

Реактивное также частотнозависимое, вычисляется по формуле:

Xc = 1 / (2 *π * f * С).

Из этого выражения видно, что с ростом частоты и/или емкости сопротивление уменьшается. Таким образом, для цепи переменного тока, где имеются резистор, катушка индуктивности и конденсатор, необходимо определять некое суммарное активное и реактивное сопротивление. В общем случае, формула для расчета полного сопротивления имеет «пифагоровский привкус»:

Zv2= Rv2 + (XL + Xc) v2

И окончательно формула полного сопротивления выглядит следующим образом:

Z =√(squarte) Rv2 + (XL + Xc) v2.

 

 

Это интересно: